Evalualing the Efiicacy of
Amarillo College's STEM Summer Bridge Program: Propensity Score Matching and Preliminary Findings

BACKGROUND

Amarillo College (AC) received a 5 -year DOE grant for their Innovating and Advancing in STEM Education project

- Overcharging Goal: Improve students' academic achievement and persistence, ultimately enhancing their ability to complete a STEM degree and transfer to a 4 -year institution

Amarillo College

BACKGROUND

Amarillo College (AC) received a 5 -year DOE grant for their Innovating and Advancing in STEM Education project

- Overcharging Goal: Improve students' academic achievement and persistence, ultimately enhancing their ability to complete a STEM degree and transfer to a 4-year institution

AMARILLO COLLEGE -

- \#1: Develop a work-based learning system (15 courses)
- \#2: Update technology skills instruction
- \#3: Develop a STEM Scholars Program
- \#4: Strengthen articulation between AC and West Texas A\&M University

BACKGROUND

Initiative \#3: Develop a STEM Scholars Program - "Summer Bridge Program"

- For 1 st year students: Development Seminars + math/science Bootcamps
- For $\underline{2}^{\text {nd }}$ year students: STEM Research with WT A\&M or TTU + Coaching Services

BACKGROUND

Amarillo College

- Urban college offering:
- 140+ transfer and technical programs
- 10 STEM AS programs
- 9,159 students (in 2020)
-44\% Hispanic
- 70% first-generation (82% of Hispanic)
- 51% low-income (57\% of Hispanic)
- 59\% part-time

- 770 STEM majors (342 Hispanic)

THE TASK

TTU performs summative program evaluation examining the effects of the Summer Bridge Program on student outcomes

- 4 cohorts: AY22-23, AY23-24, AY24-25, AY25-26; 24 program participants in the first cohort
- Key outcomes: GPA, dropout, STEM persistence, degree completion (any degree or STEM), transfer to a 4 -year institution, etc.

BUT, THERE ARE ALWAYS CHALLENGES

In an ideal setting,

RANDOMIIATION

CONTROL GROUP
INVESTIGATIONAL GROUP

- Students are randomly assigned to the Treatment (Intervention) condition and the Control condition
- By the virtue of random assignment, the two condition groups are "comparable" at baseline
- Thus, we can make a causal inference that any observed differences between the two groups are solely due to the Treatment

BUT, THERE ARE ALWAYS CHALLENGES

In reality,

- Students were not randomized. Rather, they "elected" to participate in the Summer Bridge Program
- Program participants and non-participants may be considerably dissimilar in some personal characteristics - selection bias
- Thus, when the two groups show a difference in outcomes, this could be due to the program, personal factors, or both

BUT, THERE ARE ALWAYS CHALLENGES

In reality,

- Students were not randomized. Rather, they "elected" to participate in the Summer Bridge Program
- 24 program participants vs. 650 non-participants! (1:27)

bUt, THERE ARE ALWAYS CHALLENGES

In reality,

- Students were not randomized. Rather, they "elected" to participate in the Summer Bridge Program
- 24 program participants vs. 650 non-participants! (1:27)
- Required to address WWC Standards for baseline equivalence
$0.00 \leq$ ES Difference ≤ 0.05

Satisfies baseline equivalence
0.05 < ES Difference ≤ 0.25

Statistical adjustment required to satisfy baseline equivalence

ES Difference > 0.25
Does not satisfy baseline
equivalence

CHALLENGE ACCEPTED.

A solution: Propensity score methods

- In real settings, it is often infeasible or unethical to randomly assign people into different (Treatment and Contro) conditions
- New drug testing for acute cancer
- In such case, propensity score methods are useful to account for possible selection bias and thereby allow us for addressing questions of causal inference

Propensity score (Rosenbaum \& Rubin, 1983)

- "How likely does a person receive or select the treatment (T) given his/her personal characteristics (X) at baseline?"

$$
P_{i}\left(T_{i} \mid X_{i}\right)
$$

Propensity score (Rosenbaum \& Rubin, 1983)

- PS exists both in randomized trials and in observational studies
- In randomized trials, the "true" PS is known and equal for all individuals (e.g., 0.5 in coin toss)

Propensity score (Rosenbaum \& Rubin, 1983)

- In observational studies, the "true" PS is unknown
- People already in the Treatment and Control conditions
$\hat{P}_{i}\left(T_{i} \mid X_{i}\right)$
- PS is estimated for each person using his/her "actual" treatment status (T) and values on the covariates (X) measured at baseline
- PSM utilize this conditional probability to "recreate" a situation that would have been expected in a randomized trial

4 popular methods
 (Austin, 2009; Rosenbaum, 2002; Rosenbaum \& Rubin, 1983)

- Matching treated persons with untreated persons
- Weighting data
- Stratifying sample
- Adjusting parameter estimates

Propensity score matching

- Iteratively check balance on the covariates (X) between treated persons and untreated persons in the "matched" sample

ESTIMATING PS

ESTIMATING PS

2 popular methods of estimating PS

- Parametric: Logistic regression
- Non-parametric: Generalized boosted modeling

ESTIMATING PS: LR

Logistic regression

$$
\begin{aligned}
& \hat{P}_{i}\left(T_{i} \mid X_{i}\right) \\
& \quad \Leftrightarrow \ln \left(\frac{P_{i}\left(T_{i}=1\right)}{1-P_{i}\left(T_{i}=1\right)}\right)=\beta_{0}+\beta_{1}\left(X_{1 i}\right)+\beta_{2}\left(X_{2 i}\right)+\ldots+\beta_{n}\left(X_{n i}\right)+e_{i}
\end{aligned}
$$

$T_{i}=$ "actual" treatment status ($1=$ treatment, $0=$ no treatment $)$
$X_{i}, \ldots, X_{n i}=$ values on the covariates measured at baseline

ESTIMATING PS: LR

Summer Bridge Program

Variable	Value
Program participation	Yes (1), No (0)
Age	in year
Gender	Female / Male
Race / Ethnicity	White / Black / Hispanic / Asian
First generation	Yes / No
GPA	A=4, B=3, C=2, D=1, F=0
Dropout, STEM persistence, Degree completion, Transfer Yes / No	

ESTIMATING PS: LR

Logistic regression

> param <- matchit(treated ~ age + gender + race_ethnicity + first_gen_status family=binomial, data=dat)
> param\$distance

-	unique_id $\widehat{\text { * }}$	age \uparrow	gender	race_ethnicity	first_gen_status $\stackrel{\text { * }}{ }$	treated $\stackrel{\text { ¢ }}{ }$	distance
1	23	17	Male	Unknown or not reported	Not First Generation	1	1.820141e-01
2	2	18	Male	Hispanic/Latino	First Generation	1	7.701892e-02
3	21	17	Female	Hispanic/Latino	First Generation	1	2.625690 e-01
4	4	18	Female	Asian	First Generation	1	$2.737584 \mathrm{e}-01$
5	3	19	Female	Asian	First Generation	1	1.142132e-01

ESTIMATING PS: GBM

Generalized boosted modeling allows for multiway product terms modeled "naturally" as a result of sample splitting. (Friedman, 2001; McCaffrey, Ridgeway, \& Moral, 2004)

- Step 1: Randomly select 50% of the sample - "training data".
- Step 2: Predict treatment status using Classification and Regression Trees (CART).

ESTIMATING PS: GBM

- Step 2: Predict treatment status using CART.

- The selected sample is split by the covariate that, among all covariates, best predicts treatment status
- The difference between "estimated" PS and "actual" treatment status - residual - is computed within each split subset
- Additional splits are made by predicting the residual with the remaining covariates

ESTIMATING PS: GBM

- Step 3: Many trees are formed by repeating Steps 1 \& 2.

- Step 4: The trees are combined together to calculate a final PS estimate for each person in the sample.

MATCHING

NEAREST NEIGHBOR MATCHING

In nearest neighbor (a.k.a. greedy) matching, a treated person is matched to an untreated person if their PS are most similar - in the "smallest" distance.

- Find a match for treated persons, one by one

NEAREST NEIGHBOR MATCHING

In nearest neighbor (a.k.a. greedy) matching, a treated person is matched to an untreated person if their PS are most similar - in the "smallest" distance.

ID	Treated	PS
1	1	.57
2	1	.36
	0	.54
	\boxed{n}	
	0	.60
5	0	.17
\vdots	\vdots	\vdots

- Often the PS is not close for possible pairs
- To avoid bad matches, define a "caliper" - the maximum distance in PS by which matches are allowed
- $0.25 \times$ standard deviation of the logit of PS (Rosenbaum \& Rubin, 1985)

OPTIMAL MATCHING

In optimal matching, matches are formed by minimizing the global distance in PS, defined as the sum of PS distances in the whole matched sample.

OPTIMAL MATCHING

In optimal matching, matches are formed by minimizing the global distance in PS, defined as the sum of PS distances in the whole matched sample.

MATCHING

Nearest neighbor matching

```
matchit(treated ~ age + gender + race_ethnicity +
    first_gen_status,
    family=binomial, data=dat,
    method="nearest", caliper=0.25)
```


Optimal matching

```
\begin{tabular}{|lrr|}
\hline \multicolumn{3}{|c|}{ Sample Sizes: } \\
Control & Treated \\
\hline All & 650 & 24 \\
\hline Matched & 23 & 23 \\
\hline Unmatched & 627 & 1 \\
Discarded & 0 & 0 \\
\hline
\end{tabular}
```

```
matchit(treated ~ age + gender + race_ethnicity +
    first_gen_status,
    famil\overline{y=biñomial, data=dat,}
    method="optimal")
```


BALANCE DIAGNOSTICS

BALANCE DIAGNOSTICS

Once a matching is successfully implemented, the next step is to examine if balance is made on the covariates. (Austin, 2009; Fury \& Riedwy, 1986)

- Inspection of distributions - Q-Q plot
- Standardized difference in means - Cohen's d

BALANCE DIAGNOSTICS: Q-Q PLOT

Q-Q plot

- The distribution of a covariate in the Treatment group is plotted against the distribution in the Control group
- Deviations from a 45-degree line indicate that the distributions are dissimilar.

BALANCE DIAGNOSTICS: Q-Q PLOT

Q-Q plot

BALANCE DIAGNOSTICS: Cohen's D

Cohen's d

- Continuous covariates:

Binary covariates:

$$
\frac{\left(\bar{X}_{T}-\bar{X}_{U}\right)}{\sqrt{\frac{s_{T}^{2}+s_{U}^{2}}{2}}}
$$

- A covariate with n-categories is dichotomized into n variables (by dummycoding) and then examined for balance

BALANCE DIAGNOSTICS: Cohen's D

Cohen's d

BALANCE DIAGNOSTICS: Cohen's D

Cohen's d

	Std. Mean Diff.
distance	0.0025
age	-0.0976
genderFemale	0.0882
genderMale	-0.0882
race_ethnicityAsian	-0.2333
race_ethnicityBlack	0.0000
race_ethnicityHawaiian/Pacific Islander	0.0000
race_ethnicityHispanic/Latino	-0.0882
race_ethnicityNative American	0.0000
race_ethnicityTwo or more races	0.0000
race_ethnicityUnknown or not reported	0.2176
race_ethnicityWhite	0.2141
first_gen_statusFirst Generation	-0.1004
first_gen_statusNot First Generation	0.0000
first_gen_statusUnknown/Not Reported	0.2176

$0.00 \leq$ ES Difference ≤ 0.05

Satisfies baseline equivalence

0.05 < ES Difference ≤ 0.25

Statistical adjustment required to satisfy baseline equivalence

ES Difference > 0.25

Does not satisfy baseline equivalence

BALANCE DIAGNOSTICS

- If an imbalance is indicated by dissimilar distribution and/or nontrivial d,
- Transform or re-categorize the unbalanced covariates
- Add polynomial terms of the unbalanced covariates
- Add product terms of the unbalanced covariates and other covariates
- Use a smaller caliper

ESTIMATING TREATMENT EFFECT

ESTIMATING TREATMENT EFFECT

Bivariate tests

- Estimate the treatment effect by comparing outcomes between treated persons and untreated persons in the matched sample

$$
\mathrm{p}<0.05
$$

- Continuous \rightarrow difference in means $\quad \rightarrow t$-test
- Categorical \rightarrow difference in proportions \rightarrow chi-square/Fisher test
- Binary $\quad \rightarrow$ difference in probabilities \rightarrow chi-square test

ESTIMATING TREATMENT EFFECT

Bivariate tests

Spring 23 (after the summer program in Summer 22)

Outcome	Treatment	Control	\boldsymbol{p}	$\boldsymbol{d} / \boldsymbol{V}$
GPA	2.8 ± 1.4	2.7 ± 0.8	0.90	0.04
Dropout	8%	25%	0.11	0.22
STEM persistence	86%	83%	0.79	0.04
Degree completion	8.3%	4.2%	0.55	0.09

- Positive outcomes are emerging, supporting the impacts of the Summer Bridge Program

ESTIMATING TREATMENT EFFECT

Multivariate tests

- Multivariate analysis is also applicable, of course
- Linear, logistic, or Poisson regression
- Survival analysis (e.g., time to transfer to 4-year university)
- Structural equation modeling
- Hierarchical linear modeling
- The outcome models can include the covariates used for estimating PS, so as to further eliminate residual imbalance in "prognostically" important covariates (Harder et al., 2010; Ho et al., 2007)

ESTIMATING TREATMENT EFFECT

Concluding remarks

- Selection bias is a major threat to the validity of any observational study
- PS methodology offers researchers an integrative framework where...
- Not only "overt" bias from the measured covariates can be corrected in the estimates of the treatment effect,
- But also "hidden" bias from unmeasured covariates can be evaluated in terms of robustness of the effect estimate - sensitivity analysis

A practical guide to propensity score analysis for applied clinical research

Jaehoon Lee*, Todd D. Little
Department of Educational Psychology and Leadership, College of Education, Texas Tech University, United States

ARTICLE INFO

Article history:
Received 22 September 2016
Received in revised form
10 January 2017
Accepted 12 January 2017
Available online 19 January 2017

Keywords:

Propensity score
Matching
Subclassification
Weighting
R

ABSTRACT
Observational studies are often the only viable options in many clinical settings, especially when it is unethical or infeasible to randomly assign participants to different treatment régimes. In such case propensity score (PS) analysis can be applied to accounting for possible selection bias and thereby addressing questions of causal inference. Many PS methods exist, yet few guidelines are available to aid applied researchers in their conduct and evaluation of a PS analysis. In this article we give an overview of available techniques for PS estimation and application, balance diagnostic, treatment effect estimation, and sensitivity assessment, as well as recent advances. We also offer a tutorial that can be used to emulate the steps of PS analysis. Our goal is to provide information that will bring PS analysis within the reach of applied clinical researchers and practitioners.
© 2017 Elsevier Ltd. All rights reserved.

QUESTIONS?

jaehoon.lee@Hu.edu
kwanghee.jung@@u.edu

