
Evaluating the Efficacy of
Amarillo College’s STEM Summer Bridge Program:

Propensity Score Matching and Preliminary Findings



BACKGROUND

Amarillo College (AC) received a 5-year DOE grant for their Innovating and 
Advancing in STEM Education project

• Overcharging Goal: Improve students’ academic achievement and 
persistence, ultimately enhancing their ability to complete a STEM degree 
and transfer to a 4-year institution



BACKGROUND

Amarillo College (AC) received a 5-year DOE grant for their Innovating and 
Advancing in STEM Education project

• Overcharging Goal: Improve students’ academic achievement and 
persistence, ultimately enhancing their ability to complete a STEM degree 
and transfer to a 4-year institution

• #1: Develop a work-based learning system (15 courses)
• #2: Update technology skills instruction
• #3: Develop a STEM Scholars Program
• #4: Strengthen articulation between AC and West Texas  
          A&M University



BACKGROUND

Initiative #3: Develop a STEM Scholars Program – “Summer Bridge Program”

• For 1st year students: Development Seminars + 
                                       math/science Bootcamps

• For 2nd year students: STEM Research with WT A&M or TTU + 
                                       Coaching Services



BACKGROUND

Amarillo College

• Urban college offering:
◦ 140+ transfer and technical programs
◦ 10 STEM AS programs

• 9,159 students (in 2020)
◦ 44% Hispanic
◦ 70% first-generation (82% of Hispanic)
◦ 51% low-income (57% of Hispanic)
◦ 59% part-time
◦ 770 STEM majors (342 Hispanic)



THE TASK

TTU performs summative program evaluation examining the effects of the Summer 
Bridge Program on student outcomes

• 4 cohorts: AY22-23, AY23-24, AY24-25, AY25-26; 
    24 program participants in the first cohort

• Key outcomes: GPA, dropout, STEM persistence, degree 
completion (any degree or STEM), transfer to a 4-year 
institution, etc.



BUT, THERE ARE ALWAYS CHALLENGES

In an ideal setting,
• Students are randomly assigned to the Treatment 

(Intervention) condition and the Control condition

◦ By the virtue of random assignment, the two 
condition groups are “comparable” at baseline

◦ Thus, we can make a causal inference that any 
observed differences between the two groups are 
solely due to the Treatment



BUT, THERE ARE ALWAYS CHALLENGES

In reality,

• Students were not randomized. Rather, they “elected” to participate in the Summer 
Bridge Program

◦ Program participants and non-participants may be considerably dissimilar in 
some personal characteristics — selection bias

◦ Thus, when the two groups show a difference in outcomes, this 
   could be due to the program, personal factors, or both
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BUT, THERE ARE ALWAYS CHALLENGES

In reality,

• Students were not randomized. Rather, they “elected” to participate in the Summer 
Bridge Program

• 24 program participants vs. 650 non-participants! (1 : 27)

• Required to address WWC Standards for baseline equivalence

0.00 ≤ ES Difference ≤ 0.05 0.05 < ES Difference ≤ 0.25 ES Difference > 0.25

Satisfies baseline equivalence Statistical adjustment required to 
satisfy baseline equivalence

Does not satisfy baseline 
equivalence



BUT, THERE ARE ALWAYS CHALLENGES



PSM

A solution: Propensity score methods

• In real settings, it is often infeasible or unethical to randomly assign people into 
different (Treatment and Control) conditions

◦ New drug testing for acute cancer

• In such case, propensity score methods are useful to account for possible 
selection bias and thereby allow us for addressing questions of causal inference



PSM

Propensity score (Rosenbaum & Rubin, 1983)

• “How likely does a person receive or select the treatment (T) given his/her 
personal characteristics (X) at baseline?”
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PSM

Propensity score (Rosenbaum & Rubin, 1983)

• PS exists both in randomized trials and in observational studies

• In randomized trials, the “true” PS is known and equal for all individuals (e.g., 0.5 
in coin toss)



PSM

Propensity score (Rosenbaum & Rubin, 1983)

• In observational studies, the “true” PS is unknown

◦ People already in the Treatment and Control conditions

◦ PS is estimated for each person using his/her “actual” 
treatment status (T) and values on the covariates (X) 
measured at baseline

◦ PSM utilize this conditional probability to “recreate” a 
situation that would have been expected in a randomized 
trial
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PSM

4 popular methods (Austin, 2009; Rosenbaum, 2002; Rosenbaum & Rubin, 1983)

• Matching treated persons with untreated persons

• Weighting data

• Stratifying sample

• Adjusting parameter estimates



PROCESS

Propensity score matching

• Iteratively check balance on the covariates (X) between treated persons and 
untreated persons in the “matched” sample



ESTIMATING PS



ESTIMATING PS

2 popular methods of estimating PS

• Parametric:  Logistic regression

• Non-parametric: Generalized boosted modeling



ESTIMATING PS: LR

Logistic regression

Ti = “actual” treatment status (1 = treatment, 0 = no treatment)

Xi, ... , Xni = values on the covariates measured at baseline
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ESTIMATING PS: LR

Summer Bridge Program

Variable         Value     
 Program participation      Yes (1), No (0)

Age          in year
Gender         Female / Male
Race / Ethnicity       White / Black / Hispanic / Asian
First generation       Yes / No

 
 GPA          A=4, B=3, C=2, D=1, F=0
 Dropout, STEM persistence, Degree completion, Transfer  Yes / No



ESTIMATING PS: LR

Logistic regression

> param <- matchit(treated ~ age + gender + race_ethnicity + 
           first_gen_status
           family=binomial, data=dat)
> param$distance



ESTIMATING PS: GBM

Generalized boosted modeling allows for multiway product terms modeled “naturally” 
as a result of sample splitting. (Friedman, 2001; McCaffrey, Ridgeway, & Morral, 2004)

• Step 1: Randomly select 50% of the sample — “training data”.

• Step 2: Predict treatment status using Classification and Regression Trees 
(CART).



ESTIMATING PS: GBM

• Step 2: Predict treatment status using CART.

◦ The selected sample is split by the 
covariate that, among all covariates, best 
predicts treatment status

◦ The difference between “estimated” PS 
and “actual” treatment status — residual 
— is computed within each split subset

◦ Additional splits are made by predicting 
the residual with the remaining covariates

90

7 3

male female

8010
age<25 age≥25 WhiteNon-White

52 28
Hispanic no

33 19



ESTIMATING PS: GBM

• Step 3: Many trees are formed by repeating Steps 1 & 2.

• Step 4: The trees are combined together to calculate a final PS estimate for each 
person in the sample.



MATCHING



NEAREST NEIGHBOR MATCHING

In nearest neighbor (a.k.a. greedy) matching, a treated person is matched to an 
untreated person if their PS are most similar — in the “smallest” distance.

• Find a match for treated persons, one by 
one



NEAREST NEIGHBOR MATCHING

In nearest neighbor (a.k.a. greedy) matching, a treated person is matched to an 
untreated person if their PS are most similar — in the “smallest” distance.

• Often the PS is not close for possible pairs

• To avoid bad matches, define a “caliper” 
— the maximum distance in PS by which 
matches are allowed

• 0.25 x standard deviation of the logit of PS 
(Rosenbaum & Rubin, 1985) 



OPTIMAL MATCHING

In optimal matching, matches are formed by minimizing the global distance in PS, 
defined as the sum of PS distances in the whole matched sample.

1 2

3 44



OPTIMAL MATCHING

In optimal matching, matches are formed by minimizing the global distance in PS, 
defined as the sum of PS distances in the whole matched sample.
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3
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MATCHING

Nearest neighbor matching

matchit(treated ~ age + gender + race_ethnicity + 
        first_gen_status,
        family=binomial, data=dat,
        method=“nearest”, caliper=0.25)

Optimal matching

matchit(treated ~ age + gender + race_ethnicity + 
        first_gen_status,
        family=binomial, data=dat,
        method=“optimal”)



BALANCE DIAGNOSTICS



BALANCE DIAGNOSTICS

Once a matching is successfully implemented, the next step is to examine if balance is 
made on the covariates. (Austin, 2009; Flury & Riedwyl, 1986)

• Inspection of distributions — Q-Q plot

• Standardized difference in means — Cohen’s d



BALANCE DIAGNOSTICS: Q-Q PLOT

Q-Q plot

• The distribution of a covariate in the 
Treatment group is plotted against the 
distribution in the Control group

• Deviations from a 45-degree line indicate 
that the distributions are dissimilar.



BALANCE DIAGNOSTICS: Q-Q PLOT

Q-Q plot



BALANCE DIAGNOSTICS: Cohen’s D

Cohen’s d

• Continuous covariates:   Binary covariates:

◦ A covariate with n-categories is dichotomized into n variables (by dummy-
coding) and then examined for balance
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BALANCE DIAGNOSTICS: Cohen’s D

Cohen’s d



BALANCE DIAGNOSTICS: Cohen’s D

Cohen’s d

0.00 ≤ ES Difference ≤ 0.05 0.05 < ES Difference ≤ 0.25 ES Difference > 0.25

Satisfies baseline equivalence Statistical adjustment required to 
satisfy baseline equivalence

Does not satisfy baseline 
equivalence



BALANCE DIAGNOSTICS

• If an imbalance is indicated by dissimilar distribution and/or nontrivial d, 

◦ Transform or re-categorize the unbalanced covariates
◦ Add polynomial terms of the unbalanced covariates
◦ Add product terms of the unbalanced covariates and other covariates
◦ Use a smaller caliper



ESTIMATING TREATMENT EFFECT



ESTIMATING TREATMENT EFFECT

Bivariate tests

• Estimate the treatment effect by comparing outcomes between treated persons 
and untreated persons in the matched sample

◦ Continuous → difference in means  → t-test

◦ Categorical → difference in proportions → chi-square/Fisher test

◦ Binary  → difference in probabilities → chi-square test



ESTIMATING TREATMENT EFFECT

Bivariate tests
Spring 23 (after the summer program in Summer 22)

• Positive outcomes are emerging, supporting the impacts of the Summer Bridge 
Program 

Outcome Treatment Control p d / V
GPA 2.8 ± 1.4 2.7 ± 0.8 0.90 0.04
Dropout 8% 25% 0.11 0.22
STEM persistence 86% 83% 0.79 0.04
Degree completion 8.3% 4.2% 0.55 0.09



ESTIMATING TREATMENT EFFECT

Multivariate tests

• Multivariate analysis is also applicable, of course

◦ Linear, logistic, or Poisson regression
◦ Survival analysis (e.g., time to transfer to 4-year university)
◦ Structural equation modeling
◦ Hierarchical linear modeling

• The outcome models can include the covariates used for estimating PS, so as to 
further eliminate residual imbalance in “prognostically” important covariates (Harder et 
al., 2010; Ho et al., 2007)



ESTIMATING TREATMENT EFFECT

Concluding remarks

• Selection bias is a major threat to the validity of any observational study

• PS methodology offers researchers an integrative framework where…

◦ Not only “overt” bias from the measured covariates can be corrected in the 
estimates of the treatment effect,

◦ But also “hidden” bias from unmeasured covariates can be evaluated in 
terms of robustness of the effect estimate — sensitivity analysis





QUESTIONS?
 jaehoon.lee@ttu.edu
 kwanghee.jung@ttu.edu
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