
• Presenter: Aaron Majek, MS in Sociology
(aaron.Majek@sulross.edu)

• TAIR Conference 2024

Rshiny Apps and
Executables

• Understand basics of Reactive Programming

• Review process of creating an app in Rshiny

• Go over several methods of launching an Rshiny app

• Detail common pitfalls faced when making an Rshiny app

Presentation Objectives

• Part 1: Rstudio and Rshiny

• Part 2: Creating a Shiny app

• Part 3: Implementing a Shiny app

• Part 4: Final thoughts and Considerations

Presentation Outlines

• Rstudio is an Integrated development environment (IDE) providing
users with an environment for writing and executing code.

• It is available with a GNU General public license meaning it is
open source and available to users at no cost.

• Rstudio contains a library of ‘packages’ – sets of code and
documentation which may be accessed from a centralized depository.

• As of Feb. 2023, there are at least 19,254 of such packages available
for public use.

Part 1: What is Rstudio?

What is Rshiny

• There are two key components in every shiny app:
• 1) the user interface (UI) which defines how the application looks
• 2) the server functions which tell the app how to work.
• 3) shinyApp function (which fuses the UI with the server components)

• The UI is the frontend (similar to the HTML on a website) that accepts user
inputs

• The server is the backend where inputs values are processed and may be
used to execute data manipulations for display on the UI.

• https://www.youtube.com/watch?v=9uFQECk30kA – img source

• Reactive programming is a type of programming whereby updates to
inputs result in an update to a given output. This means when an
input changes, Shiny will automatically update an output based on a
selection from an input.

• Reactivity allows for automatic updates in outputs to correspond with
changes in inputs. (IE: an update to one variables results in an update
to another).

• Observe() is a function in Rshiny that facilitates reactivity. It allows
the chaining of

Reactive Programming

• Rshiny has a gallery of publicly accessible Rshiny apps:
• https://shiny.posit.co/r/gallery/

• Live Examples:
• Simple - https://shiny.posit.co/r/gallery/start-simple/faithful/
• Complex - https://shiny.posit.co/r/gallery/interactive-

visualizations/bus-dashboard/

Reactive Programming

• Part 2: Creating a Shiny App

Building The shiny app

• Who?
• Who does the application serve? Who are the users?

• What?
• What does the application do? What are its benefits?

• When?
• Is there a deadline involved with launching the app?

• Where?
• Where are you getting the data used in creating your application.

• Why?
• Why does this process need to be done as a Shiny app? Why not an internal

tool?

Building The shiny app

• Who: The audience for the app is internal stakeholders. app was created as
a conversation starter within our university. The aim is to make an app that
is simultaneously useful and which may serve as an example of what can be
made with the assistance of AI (EG: Chatgpt).

• What: The app our IR Office created is a geocoding tool that performs two
functions 1) it calculates distance from the university and 2) determines If
student address is rural or urban.

• When: There are no deadlines involved in launching the app; however, we
had to ensure that its creation did not interfere with standard reporting (IE:
IPEDS, LBB, etc).

• Where: Data on Rural / Urban codes are sourced from US census SHP Files.
Additional info on university addresses are sourced from IPEDS datasets.
API calls are executed using Census Bulk Geocoding. Distance from the
university is calculated using OSRM API calls as well.

• Why: The app is multifunctional. Distance from the university is a key
predictor of retention. Bringing that data in our student files may assist in
retention modeling and predictive analytics. Also, our office frequently
calculates out

Building The shiny app
– Packages used

• TidyVerse: Contains sets of R packages that are standard to most Rstudio functions.

• Tigris: Load Census TIGER/Line Shapefiles. Connects with US census API facilitating upload of shp
files to your Rstudio IDE.

• Tidycensus: Connects with US census API to allow upload of census data files to your Rstudio IDE
(IE: American Community Survey).

• Sf: supports a standardized way of encoding spatial vector data. Allows for conversion and
manipulation of shp files.

• Tidygeocoder: allows for a the stepwise execution of queries made to numerous geocoding API
services at once.

• Osrm: a package the that interfaces between R and the OSRM API hosted by OpenStreetMap.
These api calls are used for calculating distance by roads between different points.

• Shiny: Assists in building web applications in Rstudio programming code.

• The TidyGeocode Package is a tool used in Rstudio to geocode
student addresses and extract lat and long coordinates.

• To the right are a set of geocoding APIs that can be
queried using the Tidygeocode package.

• Tidygeocode has a ‘cascade’ feature that
allows users to assign prioritization to certain
API calls over others in an iterative sequence

• For this analysis, we are only using the
one free API calls: the census batch query api.

TidyGeocode API

• The SF package supports the standardization of spatial vector data by representing
geographic information as a dataframe.

• It interfaces with the GEOS C/C++ library used in Geographic information systems
(GIS) software allowing transformations on projected geographic points.

• Additionally, it interfaces with PROJ, a coordinate transformation library that allows
for performing conversions between cartographic projections.

• The combination of these two interfacing capacities (with GEOS and PROJ)
facilitates the transformation of otherwise uni-dimensional data frames into multi-
dimensional datafiles across spatial interfaces.

• Together with Tidygeocode and other packages – you can merge census data into
your student records.

SF Package

• Function 1: geocode_chunkify()
• This is the function that geocodes

uploaded addresses. Because the US
Census Bulk Geocoder has a limit to how
many rows of data can be processed at
once, it is necessary to use a ‘chunkify’
sequence that breaks the data frame into
segments. The geocoding API calls are
then iteratively run on each segment
before the results are returned back as a
whole complete data frame.

The Functions

• Function 2: add_new_geometry()
• This function is used for calculating the

geographic (AKA Crows) distance from a
point given another point. The first step in
the process is to ensure that the
comparison geometry and the sf element
in the uploaded dataframe share the
same coordinate system (CRS). It then
compares the two points against each
other to calculate the distance between
them. The outputs are in meters by
default so we adjusted the results by
dividing by 1609.344 to convert it to
miles.

• NOTE: Because OSRM has limits on API
usage, we added a chunkify sequence to
break it up into sections, similar to
census API limits.

The Functions

• Function 3: add_new_geometry_osrm()
• Similar to prior add_new_geometry

function, except this one uses an api call to
OSRM. OSRM provides a quick method of
getting distance by roads. Similar to the prior
method, the results are returned in the
original dataframe as a new column titled
“Driving_Distance”.

The Functions

• Function 4: validate_file()
• This is added for security. By placing this

function at the top of the geocoding
sequence, we can block all api calls from
being run if the validation check is not
satisfied. Here, the code is setting a criteria
such that all values in the ID column must
meet the criteria of being 3 alphabetical
values followed by 7 numeric values. The
intention here is to prevent the upload the
sensitive information to the cloud or any
server out of network.

The Functions

• Cleaning IPEDS files
• Hd2021 files were used. The dataset contains information on institutional

characteristics. Data was first filtered on the variable HDEGOFR1, removing all
institutions that do not grant a degree.

• “LONGITUD“ and "LATITUDE” variables were converted into geometry sf coordinate
points. (the hd2021 files already had the institutional coordinates in the dataframe).

• Cleaning TIGRIS files
• US Census files were used. SHP files were broken out then recompiled by FIP codes and

then merged into their regional equivalents using the IPED Standards (IE: “Southwest”
region contains data on FIP codes related to AZ, NM, OK, and TX).

• This was done as Rshiny struggles to handle large batches of information. Breaking the
files into sections allows for easier uploads and faster manipulations.

• Validation Checks
• Validation checks detected possible issues when using multi-year comparisons between

2023 and 2013 Rural-Urban codes in the state of CT.

Data Cleaning and Data
Validation Checks

• Before making a multi-purpose shiny app, test the apps in a dev environment.
• Recommended best practice is as follows:

• Make separate sets of raw R code
• After verifying that the code works, convert each set of raw R code into a working Shiny app
• Lastly, after testing that each shiny app is working, bring them together into a singular Shiny

app UI.

App Design

(Live Demonstration of App code)

• Part 3: Implementing a Shiny app

• Shinyapps.io is a platform as a service (PaaS) that hosts shiny app. You can deploy apps
to this website using an R dev environment and the R package: rsconnect

• Step 1: install Rsconnect in Rstudio environment

• Step 2: create an https://www.shinyapps.io/ account

• Step 3: create a domain name and account with your shinyapps.io profile.

• Step 4: use the setAccountInfo() function in the rsconnect package to tie your Shiny
apps to your shinyapps.io account. Example is below:

• rsconnect::setAccountInfo(name="<ACCOUNT>", token="<TOKEN>",
secret="<SECRET>")

• Step 5: lastly, deploy the app using deployApp() function from rsconnect

Method 1: Shinyapps.io
using Rsconnect

• There is an alternative method to launching in
Shinyapps.io

• Step 1: follow all prior steps up to step 4 in the
prior PowerPoint slide.

• Step 2: once you have the rsconnect set up, you
will have a new Blue circular button titled
‘Publishing’ that should be accessible in your
Rstudio environment. Click it and then click
‘Connect’.

Method 1: Shinyapps.io
using Rsconnect

• When executed, the contents of a given folder directory will be bundled together and
deployed in an online application hosted by the shinyapps.io servers.

Method 1: Shinyapps.io
using Rsconnect

Method 1: Shinyapps.io
Live Example

(Live Demonstration of Launching in Shinyapps.io)

Method 1: Shinyapp.io
Final Thoughts

Benefits:
• You can deploy five (5) apps with 25 active hours for free. You can also use a

paid account for access to user authentications.
• No hardware installation.
• Data in the cloud is encrypted at rest.
• Shinyapps.io runs within AWS
Potential pitfalls:
• the service itself is not audited against any security frameworks.
• Shinyapps.io apps are not HIPAA-compliant.
• Requires data uploads to the cloud.
Additional info:
• Other information: https://posit.co/about/posit-and-the-gdpr-what-you-

need-to-know/

• This method was developed by COLUMBUS COLLABORATORY based
in OH.

• The organization was founded by several large companies in the
region with the goal of sharing resources for rapid innovation. The
company ceased operations in 2022.

• Company published in open source a rapid pace method of creating,
executing, and delivering applications to stakeholders in compliance
without risk to data security. This is what we call the Electron /
Proton method of implementation.

• The method they created utilizes Electron and couples it with Rshiny.

Method 2: Electron
Framework (Proton)

• “Electron embeds Chromium and Node.js to enable web developers
to create desktop applications” - https://www.electronjs.org/

• This allows users to make ‘thick client’ applications.
These are applications with a client-server
architecture. (IE: you make apps that are hosted on a
browser and which may rely on HTML, CSS,
and JavaScript for its UI – the code is rendered back
via the Chromium Browser engine).

• Below are some examples of apps
using a similar framework:

Method 2: Electron
Framework

The coupling of Chromium and Nodejs with the Electron framework
allows users to launch an instance of a browser window that is capable of
hosting an application.
The Electron Method works by taking R and packaging it into a directory
that is compatible with the electron framework (using Rportable) for
conversion into a think-client application. There are several key elements
that are needed for this to work:
• Nodejs - https://nodejs.org/en
• R Portable - https://sourceforge.net/projects/rportable/
• Electron - https://www.electronjs.org

Method 2: Electron
Framework

• Thick client apps - provide the functionality of a full web app
independently of a remote web server. (IE: your computer hosts both
the app and the code locally on the device). This differs from a
standard webpage where you go to a site and the changes you make
as you navigate it are communicated back to the server.

• Node.js – the main process that launches the shiny app. (server side
process within Electron Framework). Nodejs launches the app and
redirects the ‘renderer’ (Chromium) to the URL where the shiny app is
running (your local home IP address / local port).

• Rportable – A version of Rstudio that functions as a standalone
application. It allows you to use R and rstudio without needing to
install them locally. Within the electron framework,

Method 2: How Electron
works with Shiny

• Step 1: download and install R Portable, Nodejs, and electron.
• Step 2: download or acquire the basic application framework provided by the

github repo located here: https://github.com/COVAIL/electron-quick-start. Follow
the guide below:

Method 2: Electron
Framework

Step 3: follow the sequence of instructions provided in the repo
• Step 3a - perform npm install to install electron to the file directory.
• Step 3b – go to the application page. And go to the Rwin.exe in either the

Mac or Windows folders.
• Step 3c – R.exe in your computer terminal and begin procedure of installing

packages needed for your Shiny app.
• Step 3d – if needed, update names of key files to be ‘app.R’ and

‘functions.R’.
• Step 3e – close out and then click npm run package-win or run package –

mac from your terminal.

Step 4: Enjoy your executable application!
• Step 4a – you can compress and zip the file and send it to your identified

users.

Method 2: Electron
Framework

Method 2: Electron
Live Example

(Live Demonstration of Columbus Collabratory Method)

• Benefits of Electron Framework:
• You can create a fully functional web-app that is not tied to a remote

web server (IE:You run both the user interface (UI) AND you run it
locally at the same time.

• In terms of security, this means your app will default to the same
internet connection as well as security standards that are in use on your
local device.

• Scalable - allows users to effectively download an instance of the
application to their local device and run the application from there
rather than a cloud based hosting application. In contrast to other
methods, since the server and ui are both local to your device, there is
no installation involved with Rstudio. This allows you to make apps
quickly.

Method 2: Electron
Framework Final Thoughts

• Part 4: Final Considerations

• Make data files and code available through Github or another open
source depository.

• Fix issue with CT state data files.
• Modify Geocoding procedure so that null values are retained with an

imputed value instead of being dropped. (IE: If a set of coordinates is
not found in the census geocoder, the student’s address Is removed
from the dataframe; we will add a procedure that identifies an
approximate address based on the Zip code or other elements).

• Improve UI.
• Add button that allows for switching on and off different geocoding

approaches (EG: make a selector for Crows Distance / Driving Distance).
• Add progress bar
• Add additional functionalities.

Roadmap for GeocodIR

Namespace
R is a case-sensitive programming language. When creating and calling
functions in Rstudio, ensure that all variables and items are coded in the
same name. If an item in your Shiny UI selectInput function() is listed as
‘Southeast’, ensure the same spelling is used in your code on the server
side.

Common Errors when
Making Shiny apps

Data Types
R supports a variety of Data types beyond the scope of numeric, string, and
date types. Rshiny uses a data type called ‘Reactive Values’. The procedure
for assigning these values is different from most data types and is more
akin to calling a function().
* Here you create a variable and assign it a value as a Null but reactiveVal()
data type. You then may create a separate value that can be assigned the
value that is being held in the reactiveVal() variable.

Common Errors when
Making Shiny apps

Directory Inputs
When running a set of code local on your desktop, you may use directory
pathing that is local to your device. If you are converting the raw code into
a shiny app, you must remove the local directory pathing in favor of one
that is more general.

Common Errors when
Making Shiny apps

API calls
There may be some service restrictions to making API calls on a locally
hosted application vs one that is hosted on the web. Be sure to check the
terms of service agreements associated with a given service provider
before incorporating their API calls into an executable app or an app that is
hosted online.

Common Errors when
Making Shiny apps

Library Installations
There are two (2) problematic rstudio packages that may cause issues If
you have both Rstudio Desktop and Rportable installed simultaneously on
the same device. Both packages are common dependencies used in many
core Rstudio packages.

• Lifecycle() – provides warnings to Rstudio users on the deprecation and
status of library components.

• Rlang() - toolbox for working with base functions.

• When installing these into Rportable, use this installation instead:
install.packages("rlang", type = "binary")

Common Errors when
Making Shiny apps

Packages that can help create and launch apps:
• install.packages(“rhino”) https://cran.r-

project.org/web/packages/rhino/index.html
• Install.packages(“golem”) https://cran.r-

project.org/web/packages/golem/index.html
• remotes::install_github("ColumbusCollaboratory/photon") (NOTE: This is not

hosted on CRAN)

Additional thought:
* Previously, Shiny apps implementations could be done via Shiny Server Pro,
Rstudio Connect, and others; however, these different subscriptions were phased
out in favor of Posit Connect. https://shiny.posit.co/r/articles/share/deployment-
web/

Rstudio Packages for
Executable Apps

Open Source Apps
Rstudio is an open source software that is free to use. Using Rstudio at its basic
service level will not affect the overall cost of performing core IR / IE functions.
Professional Development
Rshiny functions are basically compilations of HTML, Javascript, CSS, and Rstudio
code. Users may also install packages compatible with Rshiny that allow them to
create and chain their own HTML, JS, and CSS code. This allows IR professionals to
create applications while gaining exposure to new programming and markdown
languages.
Functionality
With over 19,000 libraries available in the CRAN repository, there is hardly a limit
to what can be accomplished with Rshiny applications.
Final Thoughts
Previously it took a team of four (4) Graduate level Computer Scientists to make
applications. With AI assistance you can do the same output in a much smaller
window of time.

Benefits in Adding
Rshiny apps in IR offices

