<image>

Enhancing Predictive Models for Student Success: A Multidimensional Approach

Jae Hak Jung, Ph. D. Director, Institutional Research, Lone Star College (JaeHak.H.Jung@lonestar.edu)
Kwanghee Jung, Ph.D., Associate Professor, Texas Tech University
Jaehoon Lee, Ph.D., Associate Professor, Texas Tech University

Evolution of LSC Early Alert System

- Initiated by LSC Leadership and faculty request to identify at-risk students proactively
- Asked to create an Early Alert model aimed at accurately predicting classroom performance and potential dropouts
- Performed an in-depth logistic regression analysis to find significant predictors contributing to academic success
- Beta Early Alert Power BI dashboard developed, incorporating these predictors for real-time monitoring

Snapshot of the LSC Early Alert Power BI Dashboard

LONE STAR COLLEGE

Overcoming Limitations and Exploring Implications

 Addressed the complexities of applying logistic regression analysis within the Early Alert Power BI environment and the interpretive challenges encountered

- Issues with subjective selection of predictor thresholds and multidimensional data interpretation
- Acknowledged difficulties in accurate student categorization and fulfilling the assumptions, especially with skewed datasets

Recap of Insights from the Last TAIR Presentation

TIONE STAR COLLEGE

- Reflect on the previous TAIR conference where we showcased the construction of a predictive model for college student success using the CART(Classification and Regression Trees) method
- Discuss how this method was utilized to interpret patterns and aid in the prediction of student outcomes

Visual Recap: Last Year's Decision Tree Model

LONE STAR COLLEGE

Feedback Integration and Future Research Directions

- Addressed the exclusion of non-cognitive factors, high school performance, and college readiness in predictions
- Highlighted the importance of validating the CART method against other ML algorithms
- Stressed the need to look beyond course success to holistic outcomes like graduation and persistence rates

Advancing Research with Methodological Innovations

- Expose on expanding our analytical horizon by adopting the XGBoost & Random Forest algorithm alongside CART, enabling a comprehensive comparison of their predictive efficiencies
- Clarify our commitment to utilizing broader success metrics, such as graduation and persistence rates, reflecting a shift towards more holistic educational success indicators in line with emerging funding models for community colleges
- Upcoming development of an enhanced Power BI Interactive dashboard to facilitate early intervention for atrisk students

Machine Learning Algorithms

CART (Classification and Regression Trees)

- This is a fundamental machine learning method that builds a decision tree to make predictions
- ✓ It's akin to asking a series of yes/no questions to infer the answer, which in our context is the likelihood of a student's persistence or dropout. It's known for its simplicity and interpretability

Decision Tree

Machine Learning Algorithms

Random Forest

ONE STA

- ✓ This method creates a 'forest' of decision trees
- It's akin to assembling a committee where each member (tree) casts a vote, and the majority determines the prediction
- Random Forests are great for increasing accuracy without the risk of overfitting, making them more reliable for complex decisionmaking

Random Forest

LONE STAR COLLEGE

Machine Learning Algorithms

ONE STA

• XGBoost (Extreme Gradient Boosting):

✓ XGBoost builds trees one at a time, where each new tree helps to correct errors made by previously trained trees

✓ With its high performance and speed, it is particularly useful for large datasets and challenging machine learning problems

XGBoost

LONE STAR COLLEGE

Comparisons

Aspect	CART	Random Forest	XGBoost
Model Complexity	Nodel Complexity Simple, one tree		Complex, multiple boosted trees
Interpretability	High (single tree structure)	Medium (due to multiple trees)	Medium-Low (due to boosting and many trees)
Predictive Accuracy	Generally good baseline accuracy	Higher accuracy due to ensemble method	Often highest accuracy due to model sophistication
Use of Feature Direct use of features to Information split nodes		Combines feature information across trees	Utilizes feature information iteratively for boosting

Lone Star College Student Data: Spring 2023 Cohort

- Enrollment Overview
 - ✓ Total Students Enrolled: 4,633
- Success Metrics

ONE STAI

- ✓ Persistence and Graduation in Fall 2023
- Our definition of student success includes both persistence to the next semester and graduation from Spring 2023 to Fall 2023 for students who enrolled in Spring 2023

Predictors of student success

- 1) Cumulative GPA before Spring 2023
- 2) Term GPA in Fall 2022
- 3) Community College Survey of Student Engagement (CCSSE)
 - Active and Collaborative Learning (ACTCOLL): the extent to which students participate in class, interact with other students, and extend learning outside of the classroom.
 - Student Effort (STUEFF): time on task, preparation, and use of student services.
 - Academic Challenge (ACCHALL): The academic challenge benchmark measures the extent to which students engage in challenging mental activities, such as evaluation and synthesis, as well as the quantity and rigor of their academic work.
 - **Student-Faculty Interaction (STUFAC):** the extent to which students and faculty communicate about academic performance, career plans, and course content and assignments.
 - Support for Learners (SUPPORT) students' perceptions of their colleges and assess their use of advising and counseling services
- 4) Full-time/Part-time in SP23

Predictors of student success

- 5) Gender
- 6) Age
- 7) Race/Ethnicity
- 8) Veteran Status
- 9) Ratio between Credits Earned and Credits Attempted
- 10) High School GPA
- 11) Financial aid
- 12) College Readiness (TSIM, TSIR, TSIW)
- 13) How much earlier the student registered in SP23
- 14) Purged (non-payment) Experience in SP23

R packages and functions

LONE STAR COLLEGE

	Algorithm	R Package	Main Function	Auxiliary Functions & Methods
	CART	rpart	rpart()	printcp(), plotcp(), prune(), rpart.plot()
	XGBoost	xgboost	xgboost() , xgb.train()	xgb.DMatrix(), xgb.importance(), xgb.plot.importance(), xgb.plot.tree(), xgb.dump()
	Random Forest	randomForest	randomForest()	<pre>importance(), varImpPlot(), randomForest::getTree()</pre>

LONE STAR COLLEGE

RStudio Interface

🔞 RStudio					– 🗆 ×		
File Edit C	ode View Plots	Session Build Debug	Profile Tools Help				
0 • 0] 🕣 🖌 🔒	🔒 📥 🍌 Go to	file/function Addins -				Project: (None)
Analy	/sis-LSCdata-202	4-Persist-NewFA2 ×			Environment History Connecti	ons Tutorial	
		iource on Save 🛛 🔍 🌶	κ	Run → A . Source - =	🐨 🗔 🖙 Import Dataset 🗸 🌙	496 MiB 🝷 💰	≡ List • @ •
177	heston	fit tree (cntah	le[which min(fit tree ^s cntable["xerror"]) "CP"]		R • Global Environment •		
178	# Prune t	he tree with be	st <u>cp</u> value		Data	Data	
179					<pre>OconfMatrix_rf</pre>	List of 6	Q
180	bestcp <-	0.005 200 /- prupe(fit	tree on - beston)		<pre>Oconfusion_matrix_prun.</pre>	List of 6	Q
182	rpart.plo	t(pruned.tree,	box.palette = "BuRd", extra=104)		<pre>O confusionMatrix</pre>	List of 6	Q
183					0 dat	4633 obs. of 55 variables	
184	# Predict	ion and Evaluat	ion unad trace tost data tuma "slass")		0 data2	4633 obs. of 55 variables	
186	<pre>pred.prune <- predict(pruned.tree, test_data, type = "class") confusion_matrix_pruned <- confusionMatrix(factor(pred.prune, levels = levels(Pe print(confusion_matrix_pruned)</pre>		ersist New FA23 test)) Persist	• fit troo	List of 15	0	
187			· · · · · · · · · · · · · · · · · · ·		20 obs of 1 variable	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
188					Timpor carice	20 obs. of 1 variable	
189	# The var	'lable importanc	e can help in understanding which features contribute mo	st to the prediction	• Importance_dr	20 obs. of 2 variables	
190	print(imp	ortance)	neu. liee, scale = PALSE/	4	<pre> importance_matrix</pre>	20 obs. of 5 variables	Þ
192					Files Plots Packages Help Viewer Present	Viewer Presentation	
193	# Convert	: importance sco	res to a data frame for plotting		🖕 📄 🎤 Zoom 🖓 Export 🝷	8	😏 Publish 👻 🥝
194	library(c	aret) # For Var unlot2)	Imp()				
196	importanc	e <- varImp(pru	ned.tree, scale = FALSE)				
197	importanc	e_df <- as.data	.frame(importance)	•		Yes .77 23	
198	↓ (Lestated) ::			D Carriet a		100%	
195:1	(Onutied) 🤤	,		K Script 🌩	yes	Term_GPA_FA22 >= 1.4	
Console	Terminal ×	Background Jobs $ imes$				Yes	
🗬 R 4	.2.2 · D:/DSQR/	/Grants_2017-2020/TTU-I	DGE-Jaehak-Lone-Star-CommunityCollege-Grants-TTU/2023 Edge Grant-LSC-DT/NEW-TAIR-	-LSC-2024/ 🖈 🛛 🛞 🦪		.57 .43	
HS_GPA	·	6.807155		^		TSIM = E.Y	
pctEcr	pctEcredis 30.818960					Yes	No
STUEFF	Weighted	2.624456				.62 .38	.42 .58
Term_G	PA_FA22	51.969398				11%	4%
TSIM		26.239752			Г	CUM_GPA_Before_SP23 >= 2.3	STUEFF_Weighted < 32
TSIW	L Weighter	2.084684				Yes 52 48	
STUFAC	Weighted	0.000000				4%	
SUPPOR	TWeighte	ed 0.000000				Race_Ethnicity = Asian,Hispanic,Unknown,White	
gender		0.000000					
Purced	IN 5023	0.000000			(Ves) (Ves	Yes No	Ves
Start	Req	0.000000			.81 .19 .68 .	32 .57 .43 .34 .66	.61 .39 .36 .64
TSIR	2	0.000000			86%	3% 1%	1%
>							

Results

ŧ

Decision Tree (CART): Persistence Fall 2023

n= 3706

ONE STAF

node), split, n, loss, yval, (yprob) * denotes terminal node

1) root 3706 842 Yes (0.7728009 0.2271991)

2) Term_GPA_FA22>=1.4085 3176 615 Yes (0.8063602 0.1936398) *

3) Term_GPA_FA22< 1.4085 530 227 Yes (0.5716981 0.4283019)

6) TSIM=E,Y 400 151 Yes (0.6225000 0.3775000)

12) CUM_GPA_Before_SP23>=2.295 255 82 Yes (0.6784314 0.3215686) *

13) CUM_GPA_Before_SP23< 2.295 145 69 Yes (0.5241379 0.4758621)

26) Race_Ethnicity=Asian, Hispanic, Unknown, White 116 50 Yes (0.5689655 0.4310345) *

27) Race_Ethnicity=Black,Multiple 29 10 No (0.3448276 0.6551724) *

7) TSIM=N,W 130 54 No (0.4153846 0.5846154)

14) STUEFF_Weighted< 31.93 28 11 Yes (0.6071429 0.3928571) *

15) STUEFF_Weighted>=31.93 102 37 No (0.3627451 0.6372549) *

CART: Persistence Fall 2023

Root Node (Node 1):

- This is the starting point of the tree, encompassing all 3,706 students (training data)
- •The probability of a student persisting is 77.28%, while the probability of not persisting is 22.72%.

CART: Persistence Fall 2023

26

XGBoost: Persistence Fall 2023

77

Random Forest: Persistence Fall 2023

Feature Importance in Random Forest Model

MeanDecreaseAccuracy

Summary: Persistence Fall 2023

29

LONE STAR COLLEGE

Metric/Model	CART	XGBoost	Random Forest
Accuracy	77.45%	76.59%	77.87%
Sensitivity	93.55%	93.82%	96.50%
Specificity	16.33%	11.22%	7.14%
Top Variables	 Term GPA in FA22 Cumulative GPA before SP23 Ratio between Credits Earned and Credits Attempted 	 Term GPA in FA22 High School GPA Cumulative GPA before SP23 	 Term GPA in FA22 CCSSE subscales Cumulative GPA before SP23
AUC	0.5747	0.559	0.6008

Conclusion: Evaluation of Machine-Learning Algorithms

- Accuracy Comparison
- No significant difference in accuracy was observed among the three machine-learning algorithms
- Key Predictive Variables
 - ✓ Most Important Predictor Across All Models: GPA from the Previous Semester
 - Secondary Important Variables (Varied by Model): Cumulative GPA High School GPA Registration Timing for the Course CCSSE Subscale Scores

Implications: Machine-Learning Algorithms

CART Model Performance

- Comparable in accuracy and sensitivity to other algorithms
- Consistency in key variables predicting persistence across models
- ✓ Validated for use due to its intuitive explanation and ease of application in Power BI

Practical Implications

- The CART model's user-friendly nature supports broader acceptance and application
- ✓ Its compatibility with analytical tools, like Power BI, enhances practicality in educational and predictive settings

Future Directions

Expansion of Study Scope

- New Student Cohorts: Extend research to include newly enrolled students to diversify insights and validate findings across broader demographics
- Separate Analyses: Conduct distinct studies for graduation rates and student transfer patterns to uncover specific predictors and trends
- Integrate additional significant predictors to improve the model's accuracy and predictive power, ensuring more precise and actionable insights

Implications of Machine-Learning Integration

• Power BI and Azure Machine Learning Integration

- Develop a Power BI report that seamlessly integrates with Azure Machine Learning models and datasets
- This integration aims to enhance the reporting and analysis framework, enabling more sophisticated insights derived from machine learning predictions

Benefits

- Leverage advanced analytics to uncover deeper insights into student success factors and educational trends
- Facilitate the sharing of complex findings in an accessible, interactive format, enhancing decision-making processes for educational administrators and stakeholders

Thank you

Any questions?

Appendix: Sensitivity vs. Specificity

	Persistence (Condition Positive)	Non-Persistence (Condition Negative)
Persistence (Prediction Positive)	<mark>True Positive (TP)</mark>	False Positive (FP)
Non-Persistence (Prediction Negative)	False Negative (FN)	True Negative (TN)

Sensitivity (True Positive Rate) = TP / (TP + FN)
Specificity (True Negative Rate) = TN / (TN + FP)

COLLEGE