

Geocoding Applications with Rstudio

- Presenter: Aaron Majek, MS (<u>aaron.Majek@sulross.edu</u>
- TAIR Conference 2023

Presentation Objectives

- Understand the applications of Rstudio for geocoding in IR
- Demonstrate utilization of Rstudio geocoding packages / processes
- Iterate on several use cases for geocoding with Rstudio

Need for Geocoding

- Need to inform stakeholders about their targeted audience such that they may adopt strategies better suited to their service population.
- Need for data driven and data informed strategies at institutions of higher education.
- Census geocoded can substitute for instances wherein institutional data is missing or lacking.

What is Rstudio?

- Rstudio is an Integrated development environment (IDE) providing users with an environment for writing and executing code.
- It is available with a GNU General public license meaning it is open source and available to users at no cost.

- Rstudio contains a library of 'packages' sets of code and documentation which may be accessed from a centralized depository.
- As of Feb. 2023, there are at least 19,254 of such packages available for public use.

Rstudio Geocoding Packages

- TidyVerse: Contains sets of R packages that are standard to most Rstudio functions.
- Tigris: Load Census TIGER/Line Shapefiles. Connects with US census API facilitating upload of shp files to your Rstudio IDE.
- Tidycensus: Connects with US census API to allow upload of census data files to your Rstudio IDE (IE: American Community Survey).
- Sf: supports a standardized way of encoding spatial vector data. Allows for conversion and manipulation of shp files.
- Tidygeocoder: allows for a the stepwise execution of queries made to numerous geocoding API services at once.

- The TidyGeocode Package is a tool used in Rstudio to geocode student addresses and extract lat and long coordinates.
- To the right are a set of geocoding APIs that can be queried using the Tidygeocode package.
- Tidygeocode has a 'cascade' feature that allows users to assign prioritization to certain API calls over others in an iterative sequence
- For this analysis, we are only using the two free API calls: the census batch query api and the Nominatim API

Details

The API documentation for each service is linked to below

- Nominatim
- US Census
- ArcGIS
- Geocodio
- Location IQ
- Google
- OpenCage
- Mapbox
- HERE
- TomTom
- MapQuest
- Bing

- The SF package supports the standardization of spatial vector data by representing geographic information as a dataframe.
- It interfaces with the GEOS C/C++ library used in Geographic information systems (GIS) software allowing transformations on projected geographic points.
- Additionally, it interfaces with PROJ, a coordinate transformation library that allows for performing conversions between cartographic projections.
- The combination of these two interfacing capacities (with GEOS and PROJ) facilitates the transformation of otherwise uni-dimensional data frames into multi-dimensional datafiles across spatial interfaces.
- Together with Tidygeocode and other packages you can merge census data into your student records.

Census Geographies

- Census Geographies are the unit of analysis for the US census.
- Some census data instruments are only available at certain geographies
 - (IE S1701 poverty data is available at census tract level but not the block group level)
- The most granular census geography for which data may be matched and merged to student datafiles is the census block group level

Putting Rstudio to work: I

• Step 1 – install your packages.

```
#step1b - adding stage A packages
library("tidyverse")
library('readxl')
library("tidygeocoder")
```

```
#step1c - adding stage B packages
library(tidycensus)
library(tigris)
library(sf)
```


Putting Rstudio to work: II

 Step 2 – Initialize the geocoding function. Here we created the function 'geocode_chunked'. It breaks large address data frames into smaller ones and iterates a stepwise geocoding procedure on them. This was done for two reasons:

```
#this code executes a stepwise process for geocoding addresses by breaking
geocode_chunked <- function(df, chunk_size){</pre>
  chunk_count <- ceiling(nrow(df) / chunk_size)</pre>
  results_list <- list()
 for (i in 1:chunk_count) {
    start_index <- (i - 1) * chunk_size + 1</pre>
    end_index <- min(i * chunk_size, nrow(df))</pre>
    df_chunk <- df[start_index:end_index, ]</pre>
    df_chunk <- df_chunk %>%
      geocode_combine(
        queries = list(list(method= 'census'), list(method= 'osm')),
        global_params = list(address='ADDRESS'), cascade = TRUE
    results_list[[i]] <- df_chunk</pre>
  newdf <- bind_rows(results_list)</pre>
```

Reason one: The census geocoding API only works with files less than 10,000 rows long. Breaking the dataframe into chunks allows users to geocode in one batch.

Putting Rstudio to work: III

 Step 2 – Initialize the geocoding function. Here we created the function 'geocode_chunked'. It breaks large address data frames into smaller ones and iterates a stepwise geocoding procedure on them. This was done for two reasons:

Passing 20 addresses to the US Census batch geocoder Query completed in: 0.7 seconds Passing 6 addresses to the Nominatim single address geocoder

Passing 18 addresses to the US Census batch geocoder Query completed in: 0.6 seconds Passing 6 addresses to the Nominatim single address geocoder

Passing 12 addresses to the US Census batch geocoder Query completed in: 0.4 seconds Passing 3 addresses to the Nominatim single address geocoder Reason Two: Large dataframes take a long time to geocode. Breaking the frames into chunks allow you to see that the geocoding process is working

Putting Rstudio to work: IV

• Step 3 – Review the results. When the geocoding procedure is completed, it will produce at lat and long coordinate set in two respective columns. It will also generate a column indicating which geocoding API was used to produce a positive result. If no results were located then the lat, long, and query column will be NULL.

+	INST_NAME [‡]	INST_IPEDS_CODE	DIGIT_ANON [‡]	ADDRESS \$	lat 🌼	long [‡]	query 👗
34	Sul Ross State University	228501			30.35556	-103.67845	census
35	Sul Ross State University	228501			30.10718	-98.42077	census
36	Sul Ross State University	228501			30.35313	-103.61429	census
37	Sul Ross State University	228501			30.34860	-103.68219	census
38	Sul Ross State University	228501			31.76151	-106.30815	census
39	Sul Ross State University	228501			29.79140	-95.13488	census
40	Sul Ross State University	228501			29.75774	-99.02438	census
41	Sul Ross State University	228501			30.50989	-97.78177	census
42	Sul Ross State University	228501			29.56478	-104.36340	census
43	Sul Ross State University	228501			31.82239	-106.46536	census

Putting Rstudio to work: IV

• Step 4 – Review the results. When the geocoding procedure is completed, it will produce at lat and long coordinate set in two respective columns. It will also generate a column indicating which geocoding API was used to produce a positive result. If no results were located then the lat, long, and query column will be NULL.

+	INST_NAME [‡]	INST_IPEDS_CODE	DIGIT_ANON	ADDRESS \$	lat 🌐 🌐	long [‡]	query 👗
34	Sul Ross State University	228501			30.35556	-103.67845	census
35	Sul Ross State University	228501			30.10718	-98.42077	census
36	Sul Ross State University	228501			30.35313	-103.61429	census
37	Sul Ross State University	228501			30.34860	-103.68219	census
38	Sul Ross State University	228501			31.76151	-106.30815	census
39	Sul Ross State University	228501			29.79140	-95.13488	census
40	Sul Ross State University	228501			29.75774	-99.02438	census
41	Sul Ross State University	228501			30.50989	-97.78177	census
42	Sul Ross State University	228501			29.56478	-104.36340	census
43	Sul Ross State University	228501			31.82239	-106.46536	census

Putting Rstudio to work: V

• Step 5 – Review data and make corrections. The code below identifies certain strings of letters in the Address dataframe and flags them for removal or separate analysis.

```
# this function creates a new column that is a flag identifying th
detect_address_types <- function(df, col_name) {</pre>
  df$address_type <-
  for (i in 1:nrow(df)) {
    row_text <- tolower(df[i, col_name])</pre>
    if (grep1("\\bpo box\\b", row_text)) {
      df[i, "address_type"] <- "PO BOX"
    } else if (grepl("\\bste\\b", row_text)) {
      df[i, "address_type"] <- "STE"
    } else if (grepl("\\bapt\\b", row_text)) {
      df[i, "address_type"] <- "APT"
    } else if (grepl("\\bunit\\b", row_text)) {
      df[i, "address_type"] <- "UNIT"
    } else if (grepl("\\bapartment\\b", row_text)) {
      df[i, "address_type"] <- "APARTMENT"
    } else if (grepl("\\bdepartment\\b", row_text)) {
      df[i, "address_type"] <- "DEPARTMENT"
    } else if (grepl("\\bdept\\b", row_text)) {
      df[i, "address_type"] <- "DEPT"
  return(df)
IPEDS_ID_2015 <-detect_address_types(IPEDS_ID_2015, "ADDRESS")</pre>
```


Putting Rstudio to work: VI

• Use Tidycensus and Tigris to query and pull census data files and census shp files into your Rstudio environment. Merge census data using sf functions:

- st_transform function in sf packaged used to convert a dataframe into a shp file. Also used to set CRS
- st_join function in sf package used to join two separate shape file
- IE: If point X is contained within shape Y, execute merge

Low Income Proxy

• Situation: Pell grant recipient status is an imperfect proxy for low income status.

Metrics of Low Income

- Solution: You use geocoding procedures to create two separate alternatives to Pell Grant proxy
- The graph here shows a calculated metric of TRIO federal poverty status using B19013_001 (median house hold income) and B25010_001 (average household size)

The Irregular Data request

• Situation: An external data requester asks for a visualization of how many students reside in a given congressional district:

Congressional District	count
Congressional District 23	66
Congressional District 16	33
Congressional District 11	22
Congressional District 19	14
Congressional District 20	10
Congressional District 21	8
Congressional District 28	8
Other-In-State	73
Out-Of-State	6

Recruitment and Marketing

• Situation: Your institution's recruitment dept is collecting limited contact information from prospects who inquire about your institution's programs.

000 Clu	sters							
Cluster	Number of Block	Median HH Income	% HH in Poverty	Unemploy- ment Rate	% Hispanic	% White	% Black 0	0.7%
1 2 3 4 5	502 189 474 551 695	\$ 32,680.08 \$ 27,998.97 \$ 30,950.98 \$ 44,489.93 \$ 47,723.27	14.5% 27.0% 12.9% 7.9% 7.5% 3 20.7%	8.1% 13.8% 6.5% 5.1% 5.1% 8.9%	2.9% 17.6% 2.4% 2.3% <u>3.1%</u> 4.0% 56.3%	72.8% 91.5% 94.5% 88.1% 87.0% 38.0%	1.9% 2.1% 0.6% <u>3.0%</u> 3.6% 1.7% 0.1%	2.5% 1.4% 4.4% 3.2% 0.7% 0.6%
6 7 8 9 10	391 69 26 73 66	\$ 25,059.80 \$ 25,762.40 \$ 35,703.3 \$ 23,923.1 \$ 52,794.2	33.2% 33.7% 5 17.0% 6 35.2% 20 5.2%	18.5% 7.9% 14.3% 3.9% 3.1%	3.5% 3.7% <u>4.2%</u> 2.2% 1.7%	23.4% 37.7% 24.5% 93.1% 92.2%	15.9% 50.1% 1.1% 6 0.8% 6 4.7%	40.6 18.7 2.7 4.8 6.5
11 12 13 14	651 337 453 118 25	\$ 78,325. \$ 44,343. \$ 23,528. \$ 18,041	60 2.8% 66 9.1% .77 26.4 .45 43.0	% 4.1% % 5.8% % 7.5%	2.6% 4.0% 3.0%	6 85.4° 6 85.5°	% 3.5% % 1.8%	9.1

Crosta, P. M., Leinbach, T., & Jenkins, D. (2006). Using Census Data to Classify Community College Students by Socioeconomic Status and Community Characteristics. CCRC Research Tools. Number 1. Community College Research Center, Columbia University.

- You can geocode additional contextual information into your analysis and bin students into different groups based on shared census geography traits.
- Using this information, your recruiting or marketing dept may devise alternate marketing methodologies to different groups of students.

Statistical Analyses

• Situation: Your department wants to conduct an 'At Risk' student analysis but you are missing the variable 'distance from university'.

Distance from Uni in 100 miles	Count
1	48
2	55
3	31
4	51
5	39
6	12
10	2
12	1
13	1

Alumni Affairs

• Situation: Your alumni department wants a metric of upward mobility.

- If your institution has address data from when a student first enrolled vs where they are X years later, you can contrast the economic characteristics of a given census geography against each other.
- Solution: If a student resided in a low income census geography and now resides in a higher income census geography, you may assume that upward mobility took place.

Anything You want

- "The limits of my [shape files] mark the limits of my world." Not Ludwig Wittgenstein, Tractatus logigo-philosphicus, 1922.
- FEMA flood maps: <u>https://coast.noaa.gov/digitalcoast/data/flood.html</u>
- EPA Super Fund sites: <u>https://www.epa.gov/superfund/search-superfund-sites-where-you-live</u>
- Criminal record proximity: <u>https://www.hcdistrictclerk.com/Common/e-</u> <u>services/PublicDatasets.aspx</u> (data accessibility varies by county in TX)
- Underserved community identification: <u>https://www.ffiec.gov/cra/distressed.htm</u>
- State Park boundaries: <u>https://tpwd.texas.gov/gis/</u>
- Others: https://catalog.data.gov/dataset/?tags=texas

Additional Considerations

- Census Geographies may change with each instance of a census such that a geography bearing ID 'XYZ' from 2010 will not have the same shape in 2020.
- Solution: the census maintains a crosswalk of census files across census periods: <u>https://www.census.gov/geographies/reference-files/time-</u> <u>series/geo/relationship-files.html</u>

1990 Census Tracts

Additional Considerations

- **Centroids:** centroids are the centre point of a shp file object.
- If you have a PO box address, you cannot use the census block group unit of analysis; however, you can calculate the center point of a city and merge census data at the municipal unit of analysis
- This allows you to include students in your analysis that may otherwise be excluded.