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Why clustering?
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Overview of common algorithms and strengths/limitations
Example 2, K-means clustering
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Clustering In 60 seconds

Original unclustered data Clustered data
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Why Clustering? Segmentation.

Reverse looking Forward looking

What are characteristics of What characteristics comprise
students who used/did not use our prospective student
a service? Did/did not persist?  personas?

Who is the prototypical student How do risk factors overlap in
in each academic program? some groups of students?



Example
Female Student



Business Understanding: Female Student Re-
enroliment

The challenge

Contrary to national trends, Dallas College has experienced larger
than typical drops in female student re-enrollment patterns. Our
goal was to stem decreases for the Fall 2021 semester through a
text campaign.

The question
What messaging should be used to resonate with these students?



Data Understanding & Prep

45k students

Diverse features for the model
« Demographics: race/ethnicity, gender, age
 Financial: income, employment intensity
» Household: household size, dependent count
« Academics: last term of enrollment, credits, GPA
« Special Pop membership



Model Creation: SPSS Two-Step Clustering

Step 1 Step 2

Starts with a case as leaf node Leaf nodes are combined
through agglomeration

Each case goes into that leaf
node or breaks into a new node Result is several “best” clusters
with a silhouette score

Result is a Cluster Features
tree
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Model Evaluation

Cluster Quality

Cell Distribution

Poor Fair Good
I I I
-10 -05 0.0 05 10
Silhouette measure of cohesion and separation
Clusters
Input (Pradictor) Importance 20,000
E1.0HosM@os00.400.2000
Cluster 4 1 3 2
Label
15,000
Description
o
c
3
S 10,000
size ‘ | J:e.a% | | JZ?.A% | ‘ 224% | |
12678) 12307) (ag81)
Inputs
5,000

Asian

T
Black/African- Hispanic
American

RACE_ETH

T T
nown, White
American Indian,
Mutiple Races,
International,
Wative Hawaiian

Cloveral
M3

Cluster Comparison

sMTE3E2

DEP_COUNT
0 1 2 3 4 5 [ 7 8
RACE_ETH . C’ (]
Asian Black/African- Hispanic  Unknown, American White
American Indian, Multile

SIP_EMPL_HRS_trans

00 o

Employed fulltime  Employed parttine Mot sesking work  Seskingwork  Self Employed

SIP_INCOME _Bin

© oee

531,171 $37651 - $44.131 - §50611- $57,091- $63571-or DoNot  Lessthan
§37650 944130 3sO0610  §57090  $6d570 Higher Know $31,170




Model Output & Deployment

& i 8 O

African Am. Hispanic Hispanic White
3 dependents 4 dependents 2 dependents 1 dependent
Part-time job Part-time job Full-time job Full-time job
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overview
Algorithms
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Common Algorithms

BIRCH and Two-step (SPSS proprietary; Ex 1)
K-means, K-modes, K-medoids (Ex 2)
Hierarchical (Agglomerative and Divisive)
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The "K" Algorithms
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Main Difference in the “K” Algorithms

@ Data Point - Cluster Mean @ Cluster Medoid
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Hierarchical

Distance cutoff line

Clusters based on

Nested Clusters Dendrogram distance cutoff line




Matching Algorithms to Variable Types

T Ngorthm Varible Types

BIRCH / 2-Step Any, multiple at the same time

Hierarchical Any, but stick to one kind at a time and use
well-paired distance measure

K-means Continuous

K-modes Categorical

K-medoids Any, multiple at the same time with the

right distance measure (Gower)



Algorithms Strengths/Weaknesses

 gorttm %

BIRCH / 2-Step Flexible variable types, fast compute, large
data; there is an element of a black box

Hierarchical Flexible modeling, highly explainable;
limited to small data

K-Means, K-Modes Easy, fast, large data; sensitive to K, curse
of dimensionality, clusters same sized

K-medoids Like K-Means but more flexible variable

types and more costly tuning & compute
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Example 2
Adult Student

Persona Design
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Example 2: K-means/K-mode Clustering

Data Processing

« Population: 24 years and older adults enrolled for Fall 2021
» Features : Academics, Demographic, Financial, Household and Veteran status.

«  Mix of discrete and continuous variables with majority of them being categorical data.

Median household income in Texas
Below Federal poverty Below Lower half Above Upper half Above
Level Median Median Median

Poverty Flag INCOME BIN
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Example 2: K-means/K-mode Clustering
Python Workflow

 Randomly select the K initial centers

* Repeat
1. Assign the samples to nearest center
2. Update means/modes based on newly formed cluster
3. Calculate the cost (SSE/Sum of dissimilarity) Elbow Method For Optimal k

Minimize the cost function

* Stop when cluster centers converges 800001
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Example 2: K-meqns/ K-mode Clustering
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Example 2: K-means/K-mode Clustering

Challenges
Possible solutions
Missing values for categorical variables * Revisit our data warehouse to obtain as much
such as employment status information as we can to fill in the missing values
o000 * |Imputation with K-Nearest neighbors with
Hamming distance for categorical data
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Questions?






Jeremy Anderson, Associate Vice Chancellor of Strategic
Analytics, jeremy.anderson@dcccd.edu

Dillon Lu, Data Analyst, DLu@dcccd.edu
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