

1/31/2021

11

- Following IRB (Institutional review board) approval, a prospectively maintained database of sample of Fall 2020 transfer students to Dallas College is reviewed.
- Inclusion criteria: Fall 2020 transfer in students who enrolled in Fall 2020 in Dallas College.
- **Exclusion criteria:** any students who do not meet the above inclusion criteria will be removed from the dataset.

DANIEL LE

Section I: Clustering

- A task of dividing up data into groups (clusters), so that points in any one group are more similar to each other than to points outside the group.
- Main uses:
 - ✓ Summary: deriving a reduced representation of the full data set.
 - ✓ Discovery: looking for new insights into the structure of the data.
 - ✓ Investigating the validity of pre-existing group assignments.
 - ✓ Helping with prediction (classification or regression).

DANIEL LE

1/31/2021 **16**

Clustering algorithms

- Suppose the number of clusters K < N is pre-specified. C(i) = $k \in \{1, 2, ..., K\}$ is an encoder that assigns the *ith* observation to the *kth* cluster.
- We seeks the particular encoder that minimizes the within-point scatter (i.e. sum dissimilarities with clusters)

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i')=k} d(x_i, x_{i'})$$

This is computationally infeasible as there are many possible cluster assignments.

Feasible strategies are based on iterative greedy descent (examining a small fraction of all possible assignments)

- At each step, the cluster assignments are changed in such a way that the value of the criterion is improved from its previous value.
- When the prescription is unable to provide an improvement, the algorithm terminates with the current Agesignments as its solution.
 1/31/2021
 18

Algorithm 14.1 K-means Clustering.

- 1. For a given cluster assignment C, the total cluster variance (14.33) is minimized with respect to $\{m_1, \ldots, m_K\}$ yielding the means of the currently assigned clusters (14.32).
- 2. Given a current set of means $\{m_1, \ldots, m_K\}$, (14.33) is minimized by assigning each observation to the closest (current) cluster mean. That is,

$$C(i) = \underset{1 \le k \le K}{\operatorname{argmin}} ||x_i - m_k||^2.$$
(14.34)

3. Steps 1 and 2 are iterated until the assignments do not change.

DANIEL LE
$$\bar{x}_S = \operatorname*{argmin}_m \sum_{i \in S} ||x_i - m||^2.$$
 (114.32) 20

K-means Remarks

• Within-point scatter decreases with each iteration of the algorithm (the sum of squared distance of each observation from the cluster mean decreases).

• The final clustering depends on the initial cluster centers. We typically run K-means multiple times with random guesses, then choose among from collection of centers based on which one gives the smallest within-point scatter.

• The algorithm is not guaranteed to deliver the clustering that globally minimizes withincluster variation.

DANIEL LE

Classes 'tbl_df', 'tbl' and 'data.frame': 2537 obs. of 4 variables: \$ CUMM_CREDS: num 3 71 22 3 73 1 4 8 3 5 ... \$ CUMM_GPA : num 3 3.86 2.86 4 2.97 4 4 4 4 4 4 4 4 4 4 4 4 5 ... \$ TERM_CREDS: num 3 3 3 3 1 4 8 3 5 ... \$ TERM_GPA : num 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ...

	Cente	n Final C ers	luster				
Cluster	1	2	3	Numb	er of	Cases in	
1		65.583	10.207		ah C	luctor	
2	85.583		59.020	ea		luster	
3	10.207	59.020		Cluster	1	1543.000	
				and the second			
					2	3.000	
					2	3.000 991.000	
	Final Cluster (Contors		Valid	2	3.000 991.000 2537.000	
	Final Cluster (Centers Cluster 2	3	Valid Missing	3	3.000 991.000 2537.000 .000	
CUMM_6PA2_CREDS	Final Cluster (Centers Cluster 2 70	3	Valid Missing	2 3	3.000 991.000 2537.000 .000	
CUMM_6PA2_CREDS CUMM_6PA2	Final Cluster (1 2.410926766	Centers Cluster 2 3.336666667	3 11 2.492361251	Valid Missing	2 3	3.000 991.000 2537.000 .000	

Cluste	r Membershi	p	
Case Number	Cluster	Distance	
1	1	1.700	
2	2	1.432	
3	3	13.627	
4	1	2.717	
5	2	3.353	
6	1	4.854	
7	1	2.301	
8	3	5.051	
9	1	2.717	
10	1	2.685	
11	3	5.339	
12	1	2.717	
13	1	3.221	
14	1	3.622	
15	1	2.220	

	Ca	ase Processing Sum	mary		
	Unweighted Case	sa	Ν	Percent	
	Selected Cases	Included in Analysis	2413	95.1	
		Missing Cases	124	4.9	
		Total	2537	100.0	
	Unselected Case	s	0	.0	
	Total		2537	100.0	
	a. If weight is ir number of ca	n effect, see classification ases.	table for th	e total	
ſ	DANIEL LE			1/	31/2021 46

		Variab	les in the E	quation			
		в	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	SIP_DEPENDANTS	053	.028	3.509	1	.061	.948
	SIP_INCOME			26.753	9	.002	
	SIP_INCOME(1)	467	.151	9.499	1	.002	.627
	SIP_INCOME(2)	177	.172	1.054	1	.305	.838
	SIP_INCOME(3)	146	.198	.545	1	.460	.864
	SIP_INCOME(4)	121	.210	.330	1	.566	.886
	SIP_INCOME(5)	.070	.217	.105	1	.746	1.073
	SIP_INCOME(6)	.226	.229	.970	1	.325	1.253
	SIP_INCOME(7)	.472	.281	2.828	1	.093	1.603
	SIP_INCOME(8)	.040	.297	.018	1	.893	1.041
	SIP_INCOME(9)	.317	.166	3.654	1	.056	1.373
	SIP_EMP_STATUS			9.072	7	.248	
	SIP_EMP_STATUS(1)	250	.161	2.404	1	.121	.779
	SIP_EMP_STATUS(2)	230	.199	1.337	1	.248	.795
	SIP_EMP_STATUS(3)	525	.183	8.278	1	.004	.591
	SIP_EMP_STATUS(4)	222	.163	1.851	1	.174	.801
	SIP_EMP_STATUS(5)	- 415	.323	1.655	1	.198	.660
	SIP_EMP_STATUS(6)	431	.877	.241	1	.624	.650
	SIP_EMP_STATUS(7)	570	.755	.570	1	.450	.566
	SIP_EDUC_MOTHER			20.484	7	.005	
	SIP_EDUC_MOTHER(1)	238	.157	2.298	1	.130	.788
	SIP_EDUC_MOTHER(2)	417	.161	6.726	1	.010	.659
	SIP_EDUC_MOTHER(3)	874	.224	15.250	1	.000	.417
	SIP_EDUC_MOTHER(4)	.009	.190	.002	1	.962	1.009
	SIP_EDUC_MOTHER(5)	236	.182	1.670	1	.196	.790
	SIP_EDUC_MOTHER(6)	246	.249	.975	1	.323	.782
	SIP_EDUC_MOTHER(7)	448	.372	1.449	1	.229	.639

Step 4 ^a	SIP_DEPENDANTS	054	.028	3.868	1	.049	.947
	SIP_INCOME			33.592	9	.000	
	SIP_INCOME(1)	499	.150	11.078	1	.001	.607
	SIP_INCOME(2)	222	.169	1.723	1	.189	.801
	SIP_INCOME(3)	174	.193	.816	1	.366	.840
	SIP_INCOME(4)	139	.205	.464	1	.496	.870
	SIP_INCOME(5)	.091	.214	.182	1	.670	1.095
	SIP_INCOME(6)	.216	.227	.910	1	.340	1.241
	SIP_INCOME(7)	.481	.276	3.030	1	.082	1.618
	SIP_INCOME(8)	.060	.295	.041	1	.840	1.061
	SIP_INCOME(9)	.359	.163	4.864	1	.027	1.432
	SIP_EDUC_MOTHER			27.040	7	.000	
	SIP_EDUC_MOTHER(1)	303	.150	4.077	1	.043	.739
	SIP_EDUC_MOTHER(2)	456	.151	9.152	1	.002	.634
	SIP_EDUC_MOTHER(3)	861	.192	20.183	1	.000	.423
	SIP_EDUC_MOTHER(4)	042	.182	.054	1	.816	.959
	SIP_EDUC_MOTHER(5)	201	.178	1.272	1	.259	.818
	SIP_EDUC_MOTHER(6)	568	.210	7.303	1	.007	.566
	SIP_EDUC_MOTHER(7)	447	.362	1.528	1	.216	.639
	AGE	.016	.006	6.676	1	.010	1.016
	RACE_ETH			82.142	8	.000	
	RACE_ETH(1)	.444	.799	.308	1	.579	1.558
	RACE_ETH(2)	.481	.217	4.908	1	.027	1.618
	RACE_ETH(3)	931	.126	54.622	1	.000	.394
	RACE_ETH(4)	393	.134	8.585	1	.003	.675
	RACE_ETH(5)	-2.203	.853	6.665	1	.010	.110
	RACE_ETH(6)	461	.276	2.792	1	.095	.630
	RACE_ETH(7)	19.691	28151.138	.000	1	.999	356113499.2
	RACE_ETH(8)	621	.216	8.294	1	.004	.538
	Constant	1.232	.216	32.520	1	.000	3.427

DANIEL LE

1/31/2021 **50**

	High level Educe	tion		
Significant Variable	P-value	Odds Ratio	Interpretation	
Reference: Bachelo	r's degree or	higher (Mother's	education level)	
Attend College	0.043	0.739	26.1% lower	
Graduated High School	0.002	0.634	36.6% lower	
Attended High School	0.000	0.423	57.7% lower	
DANIEL LE			1/31/2021 51	L

Ŵ			
Significant Variable	P-value	Odds Ratio	Interpretation
Significant Variable Refe	P-value erence: White	Odds Ratio e (Race/Ethnicity)	Interpretation
Significant Variable Refe Asian	P-value erence: White 0.027	Odds Ratio e (Race/Ethnicity) 1.618	Interpretation 61.8% higher
Significant Variable Refe Asian African American	P-value erence: White 0.027 0.000	Odds Ratio e (Race/Ethnicity) 1.618 0.394	Interpretation 61.8% higher 60.6% lower
Significant Variable Refe Asian African American Hispanic	P-value erence: White 0.027 0.000 0.003 0.003	Odds Ratio e (Race/Ethnicity) 1.618 0.394 0.675	Interpretation 61.8% higher 60.6% lower 32.5% lower
Significant Variable Refe Asian African American Hispanic International	P-value erence: White 0.027 0.000 0.003 0.003	Odds Ratio e (Race/Ethnicity) 1.618 0.394 0.675 0.110	Interpretation 61.8% higher 60.6% lower 32.5% lower 89% lower