Using Baye's Theorem of Conditional Probability to Analyze Course Performance

Rion McDonald
Senior Data Analyst

Baye's Theorem

1. Used to update prior beliefs about the probability of an event, given new evidence
2. Derived from the concept of conditional probability

Applications of Baye's Theorem

1. Medical Testing/Diagnosis
2. Operations Management/Quality Control
3. Spam Filtering

Baye's Theorem

Prob of Event ${ }_{1}=$ Prior Probability

Prob(Event ${ }_{1} \mid$ Event $\left._{2}\right)=$

Prob of Event ${ }_{2}$ given Event ${ }_{1}$ is true
Prob(Event ${ }_{1}$) $\mathbf{x} \operatorname{Prob}\left(\right.$ Event $_{2} \mid$ Event $\left._{1}\right)$

Prob(Event ${ }_{2}$)

Result = Posterior Probability

Medical Test Example

Prob(Disease | Test +) =

Posterior Probability $=31.7 \%$

Analyzing Sequential Courses

1. Examine pre-requisite / next-level course pairs ENGL 1310 (Writing I) / ENGL 1320 (Writing II) MATH 1710 (Calculus I) / MATH 1720 (Calculus II)
2. Calculate prior probabilities for $2^{\text {nd }}$ course grades * Probability of A, B or Higher, Etc.
3. Use $1^{\text {st }}$ course grades \& Baye's theorem to update prior probabilities
4. Compare posterior \& prior probabilities

Population / Data Set

For each course pair...

1. Select students passing first course, Fall 2013 Fall 2017
2. Of the above group, limit to students taking $2^{\text {nd }}$ course within the next year
3. Of the above group, pare down to those completing $2^{\text {nd }}$ course

Calculus I / Calculus II Example

1. Total Population $=1,628$ students
2. Overall Probability of B or Higher in Calculus II = 52.3\% (Prior Probability)
3. Probability (B / Higher) in Calculus II, given B in Calculus I = ???? (Posterior Probability)

Calculus I / Calculus II Example

$\operatorname{Prob}\left(\mathrm{B}+{ }_{\text {cal ıl }} \mid \mathrm{B}_{\text {Calı }}\right)=$

$=$ Prob of B in Calculus I \& B+ in Calculus II

$\operatorname{Prob}\left(\mathrm{B}+{ }_{\text {cal II }}\right) \mathbf{x} \operatorname{Prob}\left(\mathrm{B}_{\text {Calı }} \mid{ }^{\mathrm{B}}+_{\text {cal॥ }}\right)$

$\operatorname{Prob}\left(\mathrm{B}_{\text {CalI }}\right)$

$=$ Prob of $\mathrm{B}_{\text {Cal। }} \& \mathrm{~B}_{{ }_{\text {Cal II }}}+$ Prob of $\mathrm{B}_{\text {Cal। }} \&<\mathrm{B}_{\text {Cal II }}$

Calculus I / Calculus II Example

$\operatorname{Prob}\left(\mathrm{B}_{\text {calıl }} \mid \mathrm{B}_{\text {call }}\right)=$

([205/1688] + [258/1628])

\# students with B in Calculus I \& <B in Calculus II

Posterior Probability $=44.3 \%$

Calculus I / Calculus II: Prior vs. Updated Probabilities

Grade	Prior Probability: Cal II Grade = Grade or Higher	Posterior Probability: Given Cal I Grade = Grade
A	31.2%	63.0%
B	52.3%	44.3%
C	69.4%	42.9%
D	80.5%	49.0%

Writing I / Writing II: Prior vs. Updated Probabilities

Grade	Prior Probability: Wri II Grade = Grade or Higher	Posterior Probability: Given Wri I Grade = Grade
A	50.7%	66.8%
B	80.2%	74.6%
C	90.9%	74.6%
D	93.4%	70.9%

Potential Issues

1. Skills/Concepts Not Aligned Between $1^{\text {st }} \&$ $2^{\text {nd }}$ Course
2. Grade Inflation in $1^{\text {st }} /$ Pre-Requisite Course
3. Excessively Stringent Grading in $2^{\text {nd }}$ Course-
4. Large Scale Decline in Student Effort
$2^{\text {nd }}$ Course Performance \& Next-Term Persistence

$2^{\text {nd }}$ Course	$\begin{aligned} & 2^{\text {nd }} \text { Course Grade } \\ & \text { vs. } \\ & 1^{\text {st }} \text { Course Grade } \end{aligned}$	Persistence Rate
Calculus II	Equal to / Greater Than	95.1\%
	Lower Than	86.5\%
Writing II	Equal to / Greater Than	89.0\%
	Lower Than	77.6\%

Calculus I / Calculus II: Updated Probabilities by Instructor Rank

 (Calculus I Grade = B)| Rank | Prior Probability:
 Cal II Grade =
 B or Higher | Posterior Probability:

 Rank = Rank |
| :--- | ---: | ---: |
| Prof/Instructor | 52.3% | |
| Adjunct/Other | 52.3% | 68.0% |
| Teaching Assistant | 52.3% | 38.0% |

Calculus I / Calculus II: Updated Probabilities by Instructor Rank (Calculus I Grade = C)

Rank	Prior Probability: Cal II Grade = C or Higher	Posterior Probability: Given Cal I Grade = C \& Rank $=$ Rank
Prof/Instructor	69.4\%	65.9\%
Adjunct/Other	69.4\%	35.9\%
Teaching Assistant	69.4\%	53.2\%

Writing I / Writing II: Updated Probabilities by Instructor Rank (Writing I Grade = B)

Rank	Prior Probability: Wri II Grade = B or Higher	Posterior Probability: Rank = Rank
Adjunct/Other	80.2%	
Teaching Assistant	80.2%	74.9%

Writing I / Writing II: Updated Probabilities by Instructor Rank (Writing I Grade = C)

Rank	Prior Probability: Wri II Grade = C or Higher	Posterior Probability: Rank = Rank
Adjunct/Other	90.9%	
Teaching Assistant	90.9%	75.6%

Thank You

Session Evaluation Form Available via the Conference App

rion.mcdonald@unt.edu

