
Text Mining and Word Clouds
 Using R to make qualitative text analysis easier

Leah Figueroa, MA
Austin Community College

TAIR 2017

Why Word Clouds
Word clouds

● Simple, easy to use data visualization
● Reveals key points
● Provide an emotional connection to text
● Effective communication
● Provide clarity
● Fast
● Engaging

January 2011 State of the Union Address

Before we begin

● You will need
○ R
○ RStudio

■ If you don’t have these, there is an excellent walk through by University of Virginia
Health System

● https://www.hsl.virginia.edu/services/howdoi/how-do-i-install-r-and-rstudio
○ Text file(s) of the document (s) you wish to create word clouds from

https://www.hsl.virginia.edu/services/howdoi/how-do-i-install-r-and-rstudio
https://www.hsl.virginia.edu/services/howdoi/how-do-i-install-r-and-rstudio

Installing the appropriate packages
● In R, the fundamental unit of shareable code is the package. A package bundles together code, data, documentation, and tests,

and is easy to share with others.
● For text mining, you will need the following packages

○ tm (text mining)
○ SnowballCC (collapses words to a common root to aid comparison of vocabulary)
○ RColorBrewer (Provides color schemes for maps (and other graphics))
○ ggplot2 (plotting system)
○ wordcloud (word cloud)
○ biclust (find biclusters of data in 2-D shape)
○ cluster (cluster analysis)
○ igraph (graphs)
○ fpc (flexible procedures for clustering)
○ Rcampdf (reads pdf) *** requires manual install

Installing the appropriate packages
● Start up Rstudio.
● Select Tools.
● Select Install Packages.
● Type NAME OF PACKAGE into Packages
● Make sure Install dependencies is checked.
● Select Install.
● If RStudio asks: “Do you want to install from sources the package which needs compilation?

y/n:”Select y.
● Manually install Rcampdf (reads pdf).

○ install.packages(“Rcampdf”, repos = “http://datacube.wu.ac.at/”, type = “source”)

Creating a text file
● Copy and paste the text in a plain text file (e.g : lbjamericanpromise1965.txt)
● Save the file

http://www.lbjlibrary.org/lyndon-baines-johnson/speeches-films/president-johnsons-special-message-to-th
e-congress-the-american-promise

Loading Your Texts
Step 1:

getwd()

If your working directory is not correct, you will need to set your working directory. Mine is located below.

 "C:/Users/l1719843/Documents/Documents for Qual Analysis/lbj/lbjspeech"

setwd(“ Fill in your own directory here, but remember to use / vs \ “)

getwd()

Step 2:

library(tm)
Loading required package: NLP
 #Create Corpus

docs <- Corpus(DirSource(Fill in your own directory here, but remember to use / vs \ “))

Loading Your Texts, Continued
Step 2:

library(tm)
Loading required package: NLP
 #Create Corpus

docs <- Corpus(DirSource(Fill in your own directory here, but remember to use / vs \ “))

docs <-Corpus(DirSource("C:/Users/l1719843/Documents/Documents for Qual Analysis/lbj/lbjspeech"))

Cleaning Your Text
● The tm package helps make data cleaning easier by using transformations

● To see the available transformations type getTransformations() at the R prompt:

> getTransformations()

[1] “removeNumbers” “removePunctuation” “removeWords” “stemDocument” “stripWhitespace”

● In addition to the prepackaged transformations, you will sometimes need to create a custom

transformations.

○ In this case, LBJ’s speech uses “--” and that will need to be removed, otherwise, it can impact
the text document.

Cleaning Your Text - Custom Transformations

● In this example, we will build a content transformer, which will call cleanText

#create the cleanText content transformer
cleanText <- content_transformer(function(x, pattern) {return (gsub(pattern, ” “, x))})

● Now we can use this content transformer to eliminate hyphens:

docs <- tm_map(docs, cleanText, “-“)

● Be sure to inspect your document(s) after every transformation

#inspect a particular document

writeLines(as.character(docs[[1]])

Cleaning Your Text - Stripping Punctuation
#Remove punctuation – replace punctuation marks with ” “
docs <- tm_map(docs, removePunctuation)

Example of text after punctuation removed:

And so at the request of your beloved Speaker and the Senator from Montana the majority leader the Senator from Illinois
the minority leader Mr McCulloch and other Members of both parties I came here tonight not as President Roosevelt came
down one time in person to veto a bonus bill not as President Truman came down one time to urge the passage of a
railroad bill but I came down here to ask you to share this task with me and to share it with the people that we both work for
I want this to be the Congress Republicans and Democrats alike which did all these things for all these people

Cleaning Text, continued
For the next steps, we will do the following:

● Convert the corpus, or document, to all lower case and;

● Remove all numbers

#Transform to lower case (need to wrap in content_transformer)
docs <- tm_map(docs,content_transformer(tolower))

#Strip digits (std transformation, so no need for content_transformer)
docs <- tm_map(docs, removeNumbers)

Example text before:

I never thought then in 1928 that I would be standing here in 1965 It never even
occurred to me in my fondest dreams that I might have the chance to help the
sons and daughters of those students and to help people like them all over this
country

Example text after:

i never thought then in that i would be standing here in it never even occurred to
me in my fondest dreams that i might have the chance to help the sons and
daughters of those students and to help people like them all over this country

Cleaning Text - Removing “Stop Words”
Stop words are common words that should be removed from the text.

Stop words include:

● articles (a, an, the)

● conjunctions (and, or but etc.)

● common verbs (is)

● qualifiers (yet, however etc)

The tm package includes a standard list of such stop words as they are referred to.

#remove stopwords using the standard list in tm
docs <- tm_map(docs, removeWords, stopwords(“english”))

http://en.wikipedia.org/wiki/Stop_words

Example of stop word removal
Example text before:

and so at the request of your beloved speaker and the senator from montana the majority leader the
senator from illinois the minority leader mr mcculloch and other members of both parties i came here
tonight not as president roosevelt came down one time in person to veto a bonus bill not as president
truman came down one time to urge the passage of a railroad bill but i came down here to ask you to
share this task with me and to share it with the people that we both work for i want this to be the congress
republicans and democrats alike which did all these things for all these people

Example of stop word removal, continued
Example text after:

request beloved speaker senator montana majority leader senator illinois minority leader mr
mcculloch members parties came tonight president roosevelt came one time person veto bonus
bill president truman came one time urge passage railroad bill came ask share task share
people work want congress republicans democrats alike things people

Cleaning Text - Removing White Space
Removing white space allows for a cleaner read

#Strip whitespace (cosmetic?)

docs <- tm_map(docs, stripWhitespace)

After completeing all transformations, depending on your version of R and/or R
studio, you may need to run the following command:

docs <- tm_map(docs, PlainTextDocument)

Stemming
Stemming allows you to reduce related words to their common root.

An example is offer, offered, and offering. Stemming allows you to reduce all words to offer.

In this example, I have chosen not to stem words

Document Term Matrix (DTM)
The document term matrix is a matrix that lists all occurrences of words across the corpus (the entire body of work) by

document.

A simple example might serve to explain the structure of the TDM more clearly. Assume we have a simple corpus

consisting of two documents, Doc1 and Doc2, with the following content:

Doc1: cats are fluffy

Doc2: dogs are fluffy

The DTM for this corpus would look like:

cats dogs are fluffy

Doc1 1 0 1 1

Doc2 0 1 1 1

Document Term Matrix (DTM), Continued
There are two important points when working with DTMs

● DTMs can be huge (number of documents x number of words in the corpus)

● Most words will only appear in a few documents

● As a result of these, a DTM is sparse

To create a DTM in R, use the following:

dtm <- DocumentTermMatrix(docs)

Document Term Matrix (DTM), Continued
You can call up the results from the dtm by typing the variable name into the console and hitting return.

dtm

<<DocumentTermMatrix (documents: 5, terms: 872)>>

Non-/sparse entries: 874/3486

Sparsity : 80%

Maximal term length: 18

Weighting : term frequency (tf)

This means that 80% of the rows are zero.

Mining the Corpus
Constructing the DTM allows us to turn the text into a mathematical object, which allows us to analyze it.

To get the frequency of occurrence of each word in the corpus, we sum over all rows to give column sums:

freq <- colSums(as.matrix(dtm))

Inspect the freq.

#length should be total number of terms

length(freq)

[1] 872

Mining the Corpus
We can review the terms in freq by sorting in descending order.
#create sort order (descending)

ord <- order(freq,decreasing=TRUE)

We can then review both the most and least frequently occurring terms:

#inspect most frequently occurring terms

freq[head(ord)]

 right will every rights must american

 31 24 19 18 17 16

#inspect least frequently occurring terms

freq[tail(ord)]

 within wonders word wounds yonder youth

 1 1 1 1 1 1

Removing “Noise”
Words like “can” or “one” aren’t really helpful in a text analysis. Some of them have been removed earlier but we can

enforce bounds when creating the DTM.

dtmr <-DocumentTermMatrix(docs, control=list(wordLengths=c(4, 20)))

This enforces lower and upper limit lengths to the words

If you have more than one document, you can further enforce bounds by picking only certain documents.
bounds = list(global = c(x, xx))))

Inspecting the new DTM:

dtmr

<<DocumentTermMatrix (documents: 5, terms: 831)>>

Non-/sparse entries: 833/3322

Sparsity : 80%

Maximal term length: 18

Weighting : term frequency (tf)

Removing “Noise”
Inspecting the new DTM:

dtmr

<<DocumentTermMatrix (documents: 5, terms: 831)>>

Non-/sparse entries: 833/3322

Sparsity : 80%

Maximal term length: 18

Weighting : term frequency (tf)

Calculating frequencies
freqr <- colSums(as.matrix(dtmr))

#length should be total number of terms

length(freqr)

[1] 831

#create sort order (asc)

ordr <- order(freqr,decreasing=TRUE)

#inspect most frequently occurring terms

freqr[head(ordr)]

 right will every rights must american

 31 24 19 18 17 16

#inspect least frequently occurring terms

freqr[tail(ordr)]

within wonders word wounds yonder youth

 1 1 1 1 1 1

Calculating frequencies, Continued
While not all high frequency words are significant, you can get an idea of potential classifications.

We will find words that occur at least 5 times.
findFreqTerms(dtmr,lowfreq=6)

[[1] "american" "americans" "bill" "came"

 [5] "cause" "come" "congress" "constitution"

 [9] "country" "deny" "equal" "every"

[13] "free" "government" "great" "history"

[17] "issue" "just" "lives" "many"

[21] "must" "nation" "negroes" "people"

[25] "poverty" "president" "problem" "right"

[29] "rights" "seek" "selma" "shall"

[33] "time" "tonight" "vote" "voting"

[37] "want" "white" "will" "world"

Basic Graphics
We will do a basic frequency histogram.

wf=data.frame(term=names(freqr),occurrences=freqr)

This creates a data frame, which allows us to plot the occurences of words
library(ggplot2)

p <- ggplot(subset(wf, freqr>5), aes(term, occurrences))

p <- p + geom_bar(stat=”identity”)

p <- p + theme(axis.text.x=element_text(angle=45, hjust=1))

p

What You’ve Been Waiting For!

WORD CLOUDS!

Creating a word cloud

#wordcloud

library(wordcloud)

#setting the same seed each time ensures consistent look across clouds

set.seed(42)

Please note, setting the seed mean you get consistent results each time you run this.
#limit words by specifying min frequency

wordcloud(names(freqr),freqr, min.freq=5)

Making the word cloud colorful!
#…add color

wordcloud(names(freqr),freqr,min.freq=70,colors=brewer.pal(6,”Dark2″))

Other colors are available:

https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf

https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf
https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf

Questions or comments?

Email me at - leah.figueroa@austincc.edu

Thank you very much for attending.

