

Using Predictive Models to Improve Student Success

Low Graduation Rates
High Drop/Fail Rates
High Student Debt
High % of At-Risk Students

Low Graduation Rates

Low Fall-to-Fall Retention

High Risk Population

Incoming Student Characteristics

90% of Students At-Risk:

Average SAT = 918

Average ACT = 19

50% First Generation

72% Hispanic

98% on Financial Aid

70% Pell Eligible

35-40%
Losing State Aid
1st Semester
When GPA Drops
Below 2.5

Need a way to identify most at-risk students before they lose aid and leave.

- Collaboration with Student Success office
- 1st academic year challenges
- Strategic Use of Resources
- Leverage Data to Improve Success
- Use predictive analysis to determine students most at risk before they even step foot on campus

Predicting At-Risk Students

Logistic Regression

- Dichotomous
- Probability score
- Predict group membership
- Aligned with goals

Initial Attempt to Predict Retention

- Unable to predict using preentry variables
- First term GPA highly predictive of retention
- Generated new research question

Building Logistic Regression Model

Test Model

Dependent variable

- 1st Term GPA 2.5 or above (yes or no)
 Independent variables
 - Financial factors
 - High school performance factors
 - College entrance exams
 - Demographics

Final Model

Model Summary Fall 2012 Data

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
3	345.488°	.211	.306

Classification Tablea

			Predicted				
			Tenn GPA >2.499		Percentage		
	Actual		.No	Yes	Correct		
Step 3	Term GPA >2.499	No	3.5	65	35.0		
		Yes	20	253	92.7		
	Overall Percentage				77.2		

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 3°	SAT Comp.	.002	.001	3.904	1	.048	1.002
	HS GPA	1.608	.333	23.316	1	.000	4.993
	Hours Enr.	.366	.071	26.829	1	.000	1.442
	Constant	-11.359	1.586	51.294	1	.000	.000

Results:

Model = 77% Accurate Fall 2012 Data;

Model = 78% Accurate Fall 2013 Data

Quick Technical Note on Logistic Regression (you can close your eyes and hum for this part)

- With a logistic regression, you are essentially modeling the probability that an individual will fit into one of two groups.
- However, if you use linear regression on a dichotomous variable, you get probabilities > 1.
- To fix this, the dependent variable is transformed
 - First into odds (odds = (Probability of Low Risk)/(Probability of High Risk)), which makes the range 0 to ∞
 - Then into logits(natural log(odds)), which makes the range ∞ to ∞

OLLU's Model

Created 'Prediction Template':

(Step 1)

Logit(probability of Low Risk) = Constant +(B*High School GPA) +(B*Hours)+ (B*SAT)

(Step 2) Convert logit into odds

(Step 3) Convert odds into probabilities Probability = Odds/((1+Odds))

(Step 4)

Determine your threshold Reduce number of false positives (i.e., "low risk")

	А	В	С	D
1	Retention Alert M			
6	Predictive			
7	HSGPA	3.06		
8	SAT	850		
9	First Sem Reg Hrs	12		
10				
16	Probability > 2.5		69.86%	
17				
18				
19				
20				

End User View

Organizational Impact

- Enrollment Management
- Student Success Division
- 3rd Party Vendor

Results

- 10% increase in 2.5+ GPA
- Fall-Fall retention increased 8%
- Estimated \$500,000 \$1M savings
- 77-78% model accuracy

Next Steps

Monitor Model

- Long-term impact
- Triage effectiveness

Other Predictions

- Online courses
- Enrollment

Advocate for Policy Change

- · Financial aid
- Advising

Using Predictive Models to Improve Student Success

