
Optimizing SQL

AKA SQL Glitter Bombs

Kate Amorella Proff
Research Analyst

Join In

 Please add your name and email to the sign in sheet.

 If you would like to take part in a SQL user group
listserv, place a check next to your name.

 Quick poll (SIS/Database/SQL Client)

4

 Indexes are used to quickly locate data without having to search every
row in a database table every time a database table is accessed.
Indexes can be created using one or more columns of a database
table, providing the basis for both rapid random lookups and efficient
access of ordered records.
-http://en.wikipedia.org/wiki/Database_index

select index_owner, index_name, table_owner, table_name,

column_name

from all_ind_columns

where table_owner = 'PROD_SATURN’

and table_name = 'SSBSECT'

;

Indexes

5

 List out desired columns in your select statement instead of selecting
all columns.

 Instead of:
select *

from prod_saturn.ssbsect

;

 Use:
select ssbsect_term_code, ssbsect_crn, ssbsect_subj_code,
ssbsect_crse_numb

from prod_saturn.ssbsect

;

Select Statements

6

 If you are simply exploring values, limit the number of rows returned.
Your DBA will thank you.

 Use:
select *

from prod_saturn.ssbsect

where rownum < 100

;

Limit Returned Rows

7

 The having clause filters after all rows have been selected. Only use
having when filtering transformation such as group by.

 Use:
select ssbsect_term_code, ssbsect_subj_code,
count(ssbsect_crn)

from prod_saturn.ssbsect

group by ssbsect_term_code, ssbsect_subj_code

having count(ssbsect_crn) > 100

Having clause

8

 Subqueries process the outer query before processing the inner
query. Use sparingly.

 Instead of:
SELECT name
FROM employee
WHERE salary = (SELECT MAX(salary) FROM employee_details)
AND age = (SELECT MAX(age) FROM employee_details)
AND dept = 'Psychology';

 Use:
SELECT name
FROM employee
WHERE (salary, age) = (SELECT MAX (salary), MAX (age)
FROM employee_details)
AND dept = 'Psychology';

Minimize subquery blocks

9

 Usually IN has the slowest performance.
 IN is efficient when most of the filter criteria is in the sub-query.
 EXISTS is efficient when most of the filter criteria is in the main query.

 Instead of:
select szrcbm1_pidm, szrcbm1_first_name

from prod_txcnmgr.szrcbm1

where szrcbm1_pidm in(select szrcbm8_pidm from
prod_txcnmgr.szrcbm8);

 Use:
select szrcbm1_pidm, szrcbm1_first_name

from prod_txcnmgr.szrcbm1

where exists (select *

from prod_txcnmgr.szrcbm8

where szrcbm1_pidm = szrcbm8_pidm);

EXISTS and IN

10

 Instead of:
select program, courses

from txir.cat_programs

join dw_prog conc

on bnr_conc = conc.dap_block_value

and conc.dap_block_type = 'CONC'

union

select *

from txir.cat_programs

join dw_prog cert

on bnr_cert = cert.dap_block_value

and cert.dap_block_type = 'SPEC’

 Use:
select program, courses

from txir.cat_programs

join dw_prog conc

on bnr_conc = conc.dap_block_value

and conc.dap_block_type = 'CONC'

union all

select *

from txir.cat_programs

join dw_prog cert

on bnr_cert = cert.dap_block_value

and cert.dap_block_type = 'SPEC’

UNION and UNION ALL

11

 When possible, use logic operators as opposed to NOT
 Instead of:

select first_name, last_name

from person

where age != 18

 Use:
select first_name, last_name

from person

where age < 18

Avoid NOT

12

 LIKE requires the processor to look through the entire string. Use
substrings instead.

 Instead of:
select first_name, last_name

from person

where last_name like ‘Smi%’

 Use:
select first_name, last_name

from person

where substr(last_name,1,3) =‘Smi’

Substrings instead of LIKE

13

 Check your select statement to see if variables truly need to be pulled
from a view.

 If all variables in the select exist in a single table, use the table instead
of the view.

Use views efficiently

14

 Cartesian products or cross-joins return all rows in all tables listed in
the query. They are usually a result of no relationship being defined
between tables.

select ID, classification

from person, student

ID classification

A1 FR

A1 SO

A1 JR

A1 SR

A2 FR

A2 SO

A2 JR

A2 SR

Check for unintentional Cartesian
products

15

 Instead of:
where
to_number(substring(ssbsect_term_code,instr(ssbsect_term_c
ode,2)) =
to_number(substring(szrcbm4_term_code,instr(ssbsect_term_c
ode,2))

 Use:
where ssbsect_term_code = szrcbm4_term_code

Avoid transformed columns in the
WHERE clause

16

 Instead of:
where age between(18 and 24)

 Use:
where age >=18 AND <=24

Use binary logic instead of BETWEEN

17

Questions or tips?

18

ka24@txstate.edu

Contact

19

mailto:ka24@txstate.edu

SQL OPTIMIZATION CHEAT SHEET

Define Select Statements
Instead of: Use:
SELECT * SELECT col1, col2, col3
FROM schema.table; FROM schema.table;

Avoid IN
Instead of:
SELECT name
FROM student
WHERE classification in('FR', 'SO');

Use:
SELECT name
FROM student
WHERE (classification = 'FR'
 OR classification = 'SO');

Avoid NOT
When filtering on a column with few options,
list out the desired variables instead using NOT.
Instead of:
SELECT name
FROM student
WHERE level != 'UG';

Use:
SELECT name
FROM student
WHERE level = 'GR' OR level = 'DR'

Avoid BETWEEN
Instead of:
SELECT name
FROM person
WHERE age BETWEEN(18 AND 24);

Use:
SELECT name
FROM person
WHERE age >=18 AND age <=24;

SUBSTR instead of LIKE
Instead of:
SELECT first_name, last_name
FROM person
WHERE last_name like 'Smi%';

Use:
SELECT first_name, last_name
FROM person
WHERE substr(last_name,1,3) = 'Smi';

Limit Returned Rows
When exploring data, limit the rows returned.
SELECT *
FROM schema.table
WHERE rownum <= 100;

Use UNION ALL
UNION will analyze data for duplicates.
UNION ALL simply appends the additional rows.
SELECT name
FROM student
UNION ALL
SELECT name
FROM employee;

Use JOIN to avoid Cartesian Products
Instead of:
SELECT first_name, last_name, major
FROM person, student
WHERE person.id = student.id;

Use:
SELECT first_name, last_name, major
FROM person
JOIN student
 ON person.id = student.id;

Minimize Subquery Blocks
Use sparingly and pull all variables in a single subquery, if possible.
Instead of:
SELECT name
FROM person
WHERE sch = (SELECT SUM(sch) FROM student)
AND gpa = (SELECT MAX(gpa) FROM student);

Use:
SELECT name
FROM person
WHERE (sch,gpa) = (SELECT SUM(sch),MAX(gpa)
FROM student);

Use Indexes
Filtering on indexes first leads to quicker results. Find indexes with:
SELECT index_owner, index_name, table_owner,
 table_name, column_name
FROM all_ind_columns
WHERE table_owner = <insert schema name>
 AND table_name = <insert table name>;

Use VIEWS efficiently
If all variables in the select exist in a single table,
use the table instead of the view.
To see the SQL behind a view:
SELECT text
FROM all_views
WHERE view_name = '<view_name>';

 Created by: Kate Amorella Proff
 Research Analyst
 Texas State University
 kproff@txstate.edu
 512-245-2386
 March 12, 2015

mailto:kproff@txstate.edu

	SQL Optimization.pdf
	Optimizing SQL
	Join In
	Indexes
	Select Statements
	Limit Returned Rows
	Having clause
	Minimize subquery blocks
	EXISTS and IN
	UNION and UNION ALL
	Avoid NOT
	Substrings instead of LIKE
	Use views efficiently
	Check for unintentional Cartesian products
	Avoid transformed columns in the WHERE clause
	Use binary logic instead of BETWEEN
	Questions or tips?
	Contact

	SQL Optimization Cheat Sheet

