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Objectives
 Define text mining and identify text mining applications.

 Survey applications of text mining.

 Use an example to illustrate text mining concepts.

 Examine how text mining fits into modern data mining 

projects.
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What Is Text Mining ?
 Text mining is a process that employs a set of algorithms 

for converting unstructured text into structured data 

objects and the quantitative methods used to analyze 

these data objects.

 “SAS defines text mining as the process of investigating 

a large collection of free-form documents in order to 

discover and use the knowledge that exists in the 

collection as a whole.” (SAS® Text Miner: Distilling 

Textual Data for Competitive Business Advantage)
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Text Mining – Two General Goals
 Pattern Discovery (Unsupervised Learning)

– Identify naturally occurring groups (classification*). 

– Derive convenient segments (clustering).

 Prediction (Supervised Learning)

– Input variables are associated with values 

of a target variable.

– Derive a model or set of rules that produces a 

predicted target value for a given set of inputs.

* Classification with a target variable is prediction.
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Text  Mining
Text mining has the following characteristics:

 operates with respect to a corpus of documents

 employs a dictionary to identify relevant terms

 accommodates a variety of metrics to quantify the 

contents of a document within the corpus

 derives a structured vector* of measurements for each 

document relative to the corpus

 employs analytical methods applied to the structured 

vector of measurements based on the goals of the 

analysis, for example, groups documents into 

segments

* Some text mining methods use a structured matrix.
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Another View of Text Mining

Text

A

Miracle

Occurs

Numbers
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Application: Document Classification

7

New 

Document

Group A vs. Others
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Group C

Group A

Group B
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Document Categorization

Document categorization

 Assign documents to pre-defined categories

Examples

 Process email into work, personal, junk

 Process documents from a newsgroup into “interesting”, 

“not interesting”, “spam and flames”

 Process transcripts of bugged phone calls into “relevant” 

and “irrelevant” 
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Application: Information Retrieval
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Document Collection

Text MiningInput 

Document

Matched 

Documents
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Introduction
How can we retrieve information using a search engine?.

 We can represent the query and the documents as 

vectors (vector space model)

– However to construct these vectors we should 

perform a preliminary document preparation.

 The documents are retrieved by finding the closest 

distance between the query and the document vector.
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Application: Clustering
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Document Collection

Text Mining

Group 

1
Group 2 Group 3 Group 4
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SAS Text 

Miner

...
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Document Classification

Document classification

 Cluster documents based on similarity

Examples

 Group samples of writing in an attempt to determine 

author(s)

 Look for “hot spots” in customer feedback 

 Find new trends in a document collection (outliers, 

hard to classify)
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IR Applications Using Text Mining
 Survey Analysis

 Analysis of Student Evaluations of Instructors

 Predictive Modeling

Enrollment Models

Retention Models

14
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Predictive Modeling

Input X1

Text

Input X2

Input Xk

Pre-processing

Parsing

Transformation

Input T1

Input T2

Input Tj

Model Score

Cleaning

Screening

Derivation

Transformation

Imputation
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Obtaining the Prediction

Nominal Target

Binary/Categorical

Data

Model

Score

Rule

Prediction

Example

Binary Response: Mail (Y/N)

Age=33,Gender=F,Income=$45,000

g(Y)=f(Age,Gender,Income)

0.378

If (Score>0.255) 

then Mail=Y

Mail
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Objectives
 Explore the general concept of decision trees.

 Build a decision tree model.

 Examine the model results and interpret these results.



18

Fitted Decision Tree

New Case
DEBTINC = 20

PROPERTY VALUE = $500,000

DELINQUENCIES = 0

FIRST MORTGAGE = $200,000

Delinquencies

DEBTINC
45

...

64%

0

1

<45

7%Property Value

< $300,000

 $300,000
6%

79%

Delinquencies

<6

6%

6

100%

First Mortgage

< $246,000  $246,000

92% 20%

Oldest Loan
83%

53%

 178< 178

64% 32%
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The Cultivation of Trees
 Split Search 

– Which splits are to be considered?

 Splitting Criterion

– Which split is best?

 Stopping Rule

– When should the splitting stop?

 Pruning Rule

– Should some branches be lopped off?
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Benefits of Trees
 Interpretability

– tree-structured presentation

 Mixed Measurement Scales

– nominal, ordinal, interval

 Regression trees

 Robustness 

 Missing Values
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Simple Prediction Illustration
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Simple Prediction Illustration
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Decision Tree Prediction Rules
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Decision Tree Prediction Rules
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Decision Tree Prediction Rules
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Decision Tree Split Search
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Decision Tree Split Search

Calculate the logworth

of every partition on 

input x1.

left right

...

Confusion Matrix
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Decision Tree Split Search
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Repeat to form a maximal tree.

Decision Tree Split Search
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Example
 Two Year School on Texas & Mexico Border

 Strong in Mathematics and Sciences

 Weak in the Arts

 Half of the students are from newly emigrated families

46
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 Improve Graduation Rate

 Identify Students Most Likely Not to Graduate

 Collect Data and Build a Predictive Model

 Determine What Intervention is Approximate 

47

Objective
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 Sample of 1000 Students Entering Fall 2010

 Determine Which Students Had Left by Fall 2013

 Data Fields

1. Student ID

2. Age

3. Gender

4. Major

5. Population

6. School

7. Enrollment Statement

8. Target

48

Hypothetical Data 
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

49

Hypothetical Data 
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Process Flow
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Decision Tree Model
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Fit Statistics



5555

ROC Curve
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 Score Students Entering in Fall 2013 With Model

 Distribute Scoring Information to Approximate People 

 Evaluate Model After Two Years

56

Next Steps


