

Introduction to Text Mining

THE POWER TO KNOW_® Tom Bohannon TAIR Conference February 2013

Objectives

- Define text mining and identify text mining applications.
- Survey applications of text mining.
- Use an example to illustrate text mining concepts.
- Examine how text mining fits into modern data mining projects.

What Is Text Mining ?

- Text mining is a process that employs a set of algorithms for converting unstructured text into structured data objects and the quantitative methods used to analyze these data objects.
- "SAS defines text mining as the process of investigating a large collection of free-form documents in order to discover and use the knowledge that exists in the collection as a whole." (SAS[®] Text Miner: Distilling Textual Data for Competitive Business Advantage)

Text Mining – Two General Goals

- Pattern Discovery (Unsupervised Learning)
 - Identify naturally occurring groups (classification*).
 - Derive convenient segments (clustering).
- Prediction (Supervised Learning)
 - Input variables are associated with values of a target variable.
 - Derive a model or set of rules that produces a predicted target value for a given set of inputs.
- * Classification with a target variable is prediction.

Text Mining

Text mining has the following characteristics:

- operates with respect to a corpus of documents
- employs a dictionary to identify relevant terms
- accommodates a variety of metrics to quantify the contents of a document within the corpus
- derives a structured vector* of measurements for each document relative to the corpus
- employs analytical methods applied to the structured vector of measurements based on the goals of the analysis, for example, groups documents into segments
- * Some text mining methods use a structured matrix.

Another View of Text Mining

Application: Document Classification

Document Categorization

Document categorization

Assign documents to pre-defined categories

Examples

- Process email into work, personal, junk
- Process documents from a newsgroup into "interesting", "not interesting", "spam and flames"
- Process transcripts of bugged phone calls into "relevant" and "irrelevant"

Application: Information Retrieval

Introduction

How can we retrieve information using a search engine?.

- We can represent the query and the documents as vectors (vector space model)
 - However to construct these vectors we should perform a preliminary document preparation.
- The documents are retrieved by finding the closest distance between the query and the document vector.

Application: Clustering

Document Classification

Document classification

- Cluster documents based on similarity
- Examples
 - Group samples of writing in an attempt to determine author(s)
 - Look for "hot spots" in customer feedback
 - Find new trends in a document collection (outliers, hard to classify)

IR Applications Using Text Mining

- Survey Analysis
- Analysis of Student Evaluations of Instructors
- Predictive Modeling

Enrollment Models

Retention Models

Predictive Modeling

Obtaining the Prediction

Nominal Target Binary/Categorical

Example Binary Response: Mail (Y/N)

Objectives

- Explore the general concept of decision trees.
- Build a decision tree model.
- Examine the model results and interpret these results.

Fitted Decision Tree

The Cultivation of Trees

- Split Search
 - Which splits are to be considered?
- Splitting Criterion
 - Which split is best?
- Stopping Rule
 - When should the splitting stop?
- Pruning Rule
 - Should some branches be lopped off?

Benefits of Trees

- Interpretability
 - tree-structured presentation
- Mixed Measurement Scales
 - nominal, ordinal, interval
- Regression trees
- Robustness
- Missing Values

Simple Prediction Illustration

Predict dot color for each x_1 and x_2 .

Training Data

Simple Prediction Illustration

Predict dot color for each x_1 and x_2 .

Training Data

24

....

Calculate the *logworth* of every partition on input x_1 .

Calculate the *logworth* of every partition on input x_1 .

0.52

1.0

0.9

0.52

Select the partition with the maximum *logworth*.

0.9

1.0

max ogworth(x₁) 0.95

Repeat for input x_2 .

Create a partition rule from the best partition across all inputs.

Repeat the process in each subset.

max logworth(x₁) 5.72

Create a second partition rule.

Create a second partition rule.

Repeat to form a maximal tree.

Example

- Two Year School on Texas & Mexico Border
- Strong in Mathematics and Sciences
- Weak in the Arts
- Half of the students are from newly emigrated families

Objective

- Improve Graduation Rate
- Identify Students Most Likely Not to Graduate
- Collect Data and Build a Predictive Model
- Determine What Intervention is Approximate

Hypothetical Data

- Sample of 1000 Students Entering Fall 2010
- Determine Which Students Had Left by Fall 2013
- Data Fields
- 1. Student ID
- 2. Age
- 3. Gender
- 4. Major
- 5. Population
- 6. School
- 7. Enrollment Statement
- 8. Target

Process Flow

Decision Tree Model

Fit Statistics

Fit Statistics Model Selection based on Valid: Misclassification Rate (_VMISC_)

			Train:			Valid:
			Valid:	Average	Train:	Average
Selected	Model	Model	Misclassification	Squared	Misclassification	Squared
Model	Node	Description	Rate	Error	Rate	Error
Y	Tree2	With Text	0.10474	0.077413	0.09683	0.086645
	Tree	No Text	0.12469	0.069562	0.10017	0.089264

ROC Curve

- Score Students Entering in Fall 2013 With Model
- Distribute Scoring Information to Approximate People
- Evaluate Model After Two Years