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Objectives

m Define text mining and identify text mining applications.
m Survey applications of text mining.
m Use an example to illustrate text mining concepts.

m Examine how text mining fits into modern data mining
projects.
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What Is Text Mining ?

m Text mining is a process that employs a set of algorithms
for converting unstructured text into structured data
objects and the guantitative methods used to analyze
these data objects.

m “SAS defines text mining as the process of investigating
a large collection of free-form documents in order to
discover and use the knowledge that exists in the
collection as a whole.” (SAS® Text Miner: Distilling
Textual Data for Competitive Business Advantage)
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Text Mining — Two General Goals

m Pattern Discovery (Unsupervised Learning)
— Identify naturally occurring groups (classification*).
— Derive convenient segments (clustering).

m Prediction (Supervised Learning)

— Input variables are associated with values
of a target variable.

— Derive a model or set of rules that produces a
predicted target value for a given set of inputs.

* Classification with a target variable is prediction.
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Text Mining

Text mining has the following characteristics:
m operates with respect to a corpus of documents
= employs a dictionary to identify relevant terms

m accommodates a variety of metrics to quantify the
contents of a document within the corpus

m derives a structured vector* of measurements for each
document relative to the corpus

m employs analytical methods applied to the structured
vector of measurements based on the goals of the
analysis, for example, groups documents into
segments

* Some text mining methods use a structured matrix.



Another View of Text Mining
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Application: Document Classification
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Document categorization
m Assign documents to pre-defined categories

Examples
m Process emall into work, personal, junk
m Process documents from a newsgroup into “interesting”,
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“not interesting”, “spam and flames”

m Process transcripts of bugged phone calls into “relevant”
and “irrelevant”



Application: Information Retrieval
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Introduction

How can we retrieve information using a search engine?.

m We can represent the query and the documents as
vectors (vector space model)

— However to construct these vectors we should
perform a preliminary document preparation.

m The documents are retrieved by finding the closest
distance between the query and the document vector.
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Application: Clustering
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Document Classification

Document classification
m Cluster documents based on similarity

Examples

m Group samples of writing in an attempt to determine
author(s)

m Look for “hot spots” in customer feedback

m Find new trends in a document collection (outliers,
hard to classify)
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IR Applications Using Text Mining

= Survey Analysis
» Analysis of Student Evaluations of Instructors
* Predictive Modeling

Enroliment Models

Retention Models
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Predictive Modeling
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Obtaining the Prediction
Nominal Target Example
Binary/Categorical Binary Response: Mail (Y/N)
Data Age=33,Gender=F,Income=%$45,000
Model : g(Y)=f(Age,Gender,Income)
Score | 0.378
If (Score>0.255)
~uliz then Mail=Y

- cocoo SR i
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Objectives

m Explore the general concept of decision trees.
m Build a decision tree model.
m Examine the model results and interpret these results.
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Fitted Decision Tree
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The Cultivation of Trees

m Split Search
— Which splits are to be considered?
m Splitting Criterion
— Which split is best?
m Stopping Rule
— When should the splitting stop?
= Pruning Rule
— Should some branches be lopped off?
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Benefits of Trees

m Interpretability
— tree-structured presentation
m Mixed Measurement Scales
— nominal, ordinal, interval
m Regression trees
m Robustness
m Missing Values
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Simple Prediction lllustration

Predict dot color
for each x, and x,.
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Simple Prediction lllustration

Predict dot color
for each x, and x,.
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Decision Tree Prediction Rules
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Decision Tree Prediction Rules

Predict:

<0.63Q 20.63
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Decision Tree Prediction Rules

Decision = _
Estimate = 0.70

Predict:
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Decision Tree Prediction Rules

Decision = _
Estimate = 0.70

Predict:
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Decision Tree Split Search

|eft B right_

Calculate the logworth
of every partition on
input x;.
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Decision Tree Split Search

|eft B right_

Calculate the logworth
of every partition on
input x;.
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Decision Tree Split Search
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the maximum Jogworth.

29



EERETT 0 S
Decision Tree Split Search

Repeat for input x,.
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Decision Tree Split Search

bottom  top
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Decision Tree Split Search

bottom top

o 54% 35% max
— — logworth(x,)
) 46% 65% 4.92
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Decision Tree Split Search

left  right
) 53% 42% max
: 1 logworth(x,)
) 41% | 58% 0.95
Compare partition
bottom  top logworth ratings.
54% | 35% max
- 1 logworth(x,)
46% | 65% 4.92
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Decision Tree Split Search

bottom top

o 54% 35% max
— — logworth(x,)
) 46% 65% 4.92

34



35

Decision Tree Split Search

<0.63 20.63

Create a partition rule
from the best partition
across all inputs.

0.63
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Decision Tree Split Search

<0.63 20.63

Repeat the process
in each subset.
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Decision Tree Split Search

left right
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Decision Tree Split Search

left right .

— - logworth(x,)
o 39% 45% 5.72
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Decision Tree Split Search

bottom top
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Decision Tree Split Search

bottom top

D 38% 55% max
= 5 logworth(x,)
o 62% 45% -2.01
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Decision Tree Split Search
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Decision Tree Split Search

left right )

= 5 logworth(x,)
o 39% 45% 5.72
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Decision Tree Split Search

Create a second
partition rule.
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Decision Tree Split Search

Create a second
partition rule.
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Decision Tree Split Search

Repeat to form a maximal tree.
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Example

= Two Year School on Texas & Mexico Border

= Strong in Mathematics and Sciences

= Weak in the Arts

= Half of the students are from newly emigrated families
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Objective

= Improve Graduation Rate

» |dentify Students Most Likely Not to Graduate
= Collect Data and Build a Predictive Model

= Determine What Intervention is Approximate

47



ST 00 L.
Hypothetical Data

= Sample of 1000 Students Entering Fall 2010
= Determine Which Students Had Left by Fall 2013
Data Fields

Student ID

Age

Gender

Major

Population

School

Enrollment Statement

Target

© NOoO Ok bR
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Ll AGE

Frequency

250 —

200 —

150

100

50+

16.0 173 186 1949 212 225 238 251 26.4 2 290

AGE

Ll Gender

Frequency

400 —

200 —

female male

Gender
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bl Major

Frequency

T T T T
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T T
math Miusic (orchestra) Music (vocal) Pre-Eng

chemistry Fine Arts
Major

bl Population

Frequency
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200 —

T
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b School
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Decision Tree Model

¥ Tree
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Fit Statistics

Fit 3tatistics
Model Zelection based on Valid: Misclassification Rate [_WHMIZC )

Train: Walid:
Valid: Average Train: Average
Gelected Model Model Misclazzification Squared Misclazssification Squared
Model Node Description Fate Error Fate Error
T Treel With Text 0.10474 0.077413 0.09683 0.086645
Tree No Text 0.12489 0.069562 0.10017 0.089264
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ROC Curve
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Next Steps

= Score Students Entering in Fall 2013 With Model
= Distribute Scoring Information to Approximate People
= Evaluate Model After Two Years
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